This paper proposes a progressive damage model incorporating strain and heating rate effects for the prediction of composite specimen damage resulting from simulated lightning strike test conditions. A mature and robust customised failure model has been developed. The method used a scaling factor approach and non-linear degradation models from published works to modify the material moduli, strength and stiffness properties to reflect the effects of combined strain and thermal loading. Hashin/Puck failure criteria was used prior to progressive damage modelling of the material. Each component of the method was benchmarked against appropriate literature. A three stage modelling framework was demonstrated where an initial plasma model predicts specimen surface loads (electrical, thermal, pressure); a coupled thermalelectric model predicts specimen temperature resulting from the electrical load; and a third, dynamic, coupled temperature-displacement, explicit model predicts the material state due to the thermal load, the resulting thermal-expansion and the lightning plasma applied pressure loading. Unprotected specimen damage results were presented for two SAE lightning test Waveforms (B & A); with the results illustrating how thermal and mechanical damage behaviour varied with waveform duration and peak current.