“…• supervised feed-forward neural networks (Collister and Lahav, 2004;Vanzella et al, 2004;Brescia et al, 2013Brescia et al, , 2014Brescia et al, , 2015Brescia et al, , 2019Cavuoti et al, 2014;Almosallam et al, 2016;Sadeh et al, 2016); • self-adaptive methods for the detection and removal of anomalies from photometric and spectroscopic data (Hoyle et al, 2015;Baron and Poznanski, 2017;Reis et al, 2019); • Support Vector Machines (Zheng and Zhang, 2012;Zhang and Zhao, 2014;Han et al, 2016;Jones and Singal, 2017); • tree-based (Carrasco Kind and Brunner, 2013;Jouvel et al, 2017;Meshcheryakov et al, 2018); • k-Nearest Neighbors (kNN) (Graham et al, 2018;Curran, 2020); • Gaussian processes (Bonfield et al, 2010;Almosallam et al, 2016); • Mixture Density Networks (Ansari et al, 2020); • unsupervised models for clustering and for estimating the coverage of the parameter space (Way and Klose, 2012;Masters et al, 2015;Stensbo-Smidt et al, 2017) or for calibration purposes (Hildebrandt et al, 2010;Masters et al, 2015;Wright et al, 2020); • deep Neural Networks, especially relevant for the photo-z prediction from images Chong and Yang, 2019;Pasquet et al, 2019); • hybrid methods for the selection of photometric redshifts considered particularly accurate and useful for cosmological purposes (Bonnett et al, 2016;Leistedt and Hogg, 2017;…”