Odour emissions are a global issue that needs to be controlled to prevent negative impacts. Instrumental odour monitoring systems (IOMS) are an intelligent technology that can be applied to continuously assess annoyance and thus avoid complaints. However, gaps to be improved in terms of accuracy in deciphering information, especially in the implementation of the mathematical model, are still being researched, especially in environmental odour monitoring applications. This research presents and discusses the implementation of traditional and innovative parametric and non-parametric prediction techniques for the elaboration of an effective odour quantification monitoring model (OQMM), with the aim of optimizing the accuracy of the measurements. Artificial neural network (ANN), multivariate adaptive regression splines (MARSpline), partial least square (PLS), multiple linear regression (MLR) and response surface regression (RSR) are implemented and compared for prediction of odour concentrations using an advanced IOMS. Experimental analyses are carried out by using real environmental odour samples collected from a municipal solid waste treatment plant. Results highlight the strengths and weaknesses of the analysed models and their accuracy in terms of environmental odour concentration prediction. The ANN application allows us to obtain the most accurate results among the investigated techniques. This paper provides useful information to select the appropriate computational tool to process the signals from sensors, in order to improve the reliability and stability of the measurements and create a robust prediction model.