This study investigated the effects of the alginate and polyvinyl alcohol (PVA) entrapment on the viability of Escherichia coli cells exposed to single wall carbon nanotubes (SWCNTs) with a diameter of 1-2nm. Viability was examined using a galactosidase enzyme assay, LIVE/DEAD BacLight assay, and total ribonucleic acid quantity. Variables studied included SWCNT concentration (5, 10, 20, 50, 100, 200, 500, and 1000μg/ml), SWCNT length (0.5-2μm for short SWCNTs and 5-30μm for long SWCNTs), and initial bacterial concentration (6.5 log10 CFU and 9 log10 CFU per test). Results showed that both alginate and PVA entrapments mitigate the bactericidal effect of SWCNTs. At the highest SWCNT concentration tested (1000μg/ml), the viability of the cells relative to controls (systems with only E. coli, no SWCNTs), was 0-60% for free cells and 60-90% for alginate and PVA entrapped cells. The bactericidal effect depended on SWCNT type and concentration, and bacterial concentration. In general, long SWCNTs (5-30μm) caused significantly greater reductions in the viability of entrapped cells than the short SWCNTs except for the two highest SWCNT concentrations studied, 500 and 1000μg/ml. Microscopy showed that the entrapment matrices prevented SWCNTs from entering the beads. This study shows that bacterial entrapment is effective at limiting the bactericidal effect of SWCNTs.