The aim of this study is to obtain the deflection curve equations of endplates with one to five clamping belts which allows investigating endplates deflection for uniform contact pressure distribution. Based on an equivalent mechanical model for a large fuel cell stack, the effects of the thicknesses of endplates, numbers, and positions of clamping belts are discussed, and the optimal thickness of endplate with different clamping belts is obtained, and moreover the optimal position of intermediate and outer clamping belts on the endplates. Finally, a three-dimensional finite element analysis (FEA) of a fuel cell stack clamping with steel belts and nonlinear contact elements is compared to what the equivalent mechanical beam model predicts. The result of this study shows that the equivalent mechanical model gives good prediction accuracy for the deflection behavior of endplates and the clamping force of the fuel cell stack, which is effective and helpful for the design of a large fuel cell stack assembly.