The aim of this paper is to investigate mechanical functioning of a single skeletal muscle, active within a group of (previously) synergistic muscles. For this purpose, we assessed wrist angle-active moment characteristics exerted by a group of wrist flexion muscles in the rat for three conditions: (i) after resection of the upper arm skin; (ii) after subsequent distal tenotomy of flexor carpi ulnaris muscle (FCU); and (iii) after subsequent freeing of FCU distal tendon and muscle belly from surrounding tissues (MT dissection). Measurements were performed for a control group and for an experimental group after recovery (5 weeks) from tendon transfer of FCU to extensor carpi radialis (ECR) insertion. To assess if FCU tenotomy and MT dissection affects FCU contributions to wrist moments exclusively or also those of neighboring wrist flexion muscles, these data were compared to wrist angle-moment characteristics of selectively activated FCU. FCU tenotomy and MT dissection decreased wrist moments of the control group at all wrist angles tested, including also angles for which no or minimal wrist moments were measured when activating FCU exclusively. For the tendon transfer group, wrist flexion moment increased after FCU tenotomy, but to a greater extent than can be expected based on wrist extension moments exerted by selectively excited transferred FCU. We conclude that dissection of a single muscle in any surgical treatment does not only affect mechanical characteristics of the target muscle, but also those of other muscles within the same compartment. Our results demonstrate also that even after agonistic-to-antagonistic tendon transfer, mechanical interactions with previously synergistic muscles do remain present.