Spectroscopic ellipsometry ͑SE͒ is a noncontact and nondestructive optical technique for thin film characterization. In the past 10 yr, it has migrated from the research laboratory into the semiconductor, data storage, display, communication, and optical coating industries. The wide acceptance of SE is a result of its flexibility to measure most material types: dielectrics, semiconductors, metals, superconductors, polymers, biological coatings, and even multilayers of these materials. Measurement of anisotropic materials has also made huge strides in recent years. Traditional SE measurements cover the ultraviolet, visible, and near infrared wavelengths. This spectral range is now acquired within seconds with high accuracy due to innovative optical configurations and charge coupled device detection. In addition, commercial SE has expanded into both the vacuum ultraviolet ͑VUV͒ and midinfrared ͑IR͒. This wide spectral coverage was achieved by utilizing new optical elements and detection systems, along with UV or Fourier transform IR light sources. Modern instrumentation is now available with unprecedented flexibility promoting a new range of possible applications. For example, the VUV spectral region is capable of characterizing lithographic materials for 157 nm photolithography. The VUV also provides increased sensitivity for thin layers ͑e.g., gate oxides or self-assembled monolayers͒ and allows investigation of high-energy electronic transitions. The infrared spectral region contains information about semiconductor doping concentration, phonon absorption, and molecular bond vibrational absorptions. In this work, we review the latest progress in SE wavelength coverage. Areas of significant application in both research and industrial fields will be surveyed, with emphasis on wavelength-specific information content.