The molecular structure models of asphalt binder, ethanol additive, and ethanol-based foamed asphalt were constructed through the Molecular Dynamics (MD) method. The standard ethanol-based foamed asphalt model was employed to describe the modifier with its different compositions, including 10%, 20%, and 30% ethanol. The simulation calculations were done for the ethanol-based foamed asphalt molecular models under the NPT and NVT ensembles. The density, glass transition temperature, and radial distribution function of ethanol-based foamed asphalt molecular models were obtained to verify the rationalization of asphalt models and analyze the variation of density parameters with temperature and ethanol content for ethanol-based foamed asphalt molecular models. The results show that the simulated densities of the asphalt binder and three ethanol-based foamed asphalt molecular models remained constant with the increase of simulation steps. The simulated density values of basic and 10%-ethanol-based foamed asphalt molecular models are close to 0.9 g/cm3. The simulated densities of 20%-ethanol-based and 30%-ethanol-based foamed asphalt molecular models were 0.8 g/cm3 and 0.75 g/cm3. Meanwhile, the simulated density values of both asphalt binder and all ethanol-based foamed asphalt decreased with the increase in temperature and ethanol additive dosage. The glass transition temperatures of basic asphalt binder, 10%-ethanol-based, 20%-ethanol-based, and 30%-ethanol-based foamed asphalt occurred in the range of 275-295K, 330-350K, 330-350K, and 320-340K, respectively. In contrast, the glass transition temperature of ethanol-based foamed asphalt increased with the increase of ethanol additive dosage, indicating that adding ethanol additive significantly improved the high-temperature resistance of matrix asphalt. In the radial distribution function diagrams of all samples, the first strong peak appeared at 0.85-1.3 Å, and the second strong peak appeared at 1.95-2.35 Å. Moreover, both peaks increased with the increase of ethanol additive dosage, suggesting that the contact between ethanol molecules and asphalt molecules was closer with the rise of ethanol additive dosage.