SummaryThe two highly conserved NPA motifs (asparagine-prolinealanine, NPA) are the most important structural domains that play a crucial role in water-selective permeation in aquaporin water channels. However, the functions of NPA motifs in aquaporin (AQP) biogenesis remain largely unknown. Few AQP members with variations in NPA motifs such as AQP11 and AQP12 do not express in the plasma membrane, suggesting an important role of NPA motifs in AQP plasma membrane targeting. In this study, we examined the role of the two NPA motifs in AQP4 plasma membrane targeting by mutagenesis. We constructed a series of AQP4 mutants with NPA deletions or single amino acid substitutions in AQP4-M1 and AQP4-M23 isoforms and analyzed their expression patterns in transiently transfected FRT and COS-7 cells. Western blot analysis showed similar protein bands of all the AQP4 mutants and the wild-type AQP4. AQP4 immunofluorescence indicated that deletion of one or both NPA motifs resulted in defective plasma membrane targeting, with apparent retention in endoplasmic reticulum (ER). The A99T mutant mimicking AQP12 results in ER retention, whereas the A99C mutant mimicking AQP11 expresses normally in plasma membrane. Furthermore, the AQP4-M1 but not the M23 isoform with P98A substitution in the first NPA motif can target to the plasma membrane, indicating an interaction of Nterminal sequence of AQP4-M1 with the first NPA motif. These results suggest that NPA motifs play a key role in plasma membrane expression of AQP4 but are not involved in AQP4 protein synthesis and degradation. The NPA motifs may interact with other structural domains in the regulation of membrane trafficking during aquaporin biogenesis.