Silk fibroin (SF) is a biocompatible and slowly biodegradable material with excellent mechanical properties and huge potential for use as biofunctional interface in electronic devices that aim to stimulate and control neural network activity and peripheral nerve repair. It is shown that SF films act as material interfaces that support the adherence and neurite outgrowth of dorsal root ganglion (DRG) neurons and preserve neuronal functions. Silk films preserve the capability of neuronal cells to fire and DRG neurons on silk films retain the intracellular free Ca2+ concentration ([Ca2+]i) response to capsaicin, a typical noxious stimulus for this neuronal culture model. It is also demonstrated that nerve growth factor (NGF)‐functionalized silk films promote neurite outgrowth and modulate functional properties of DRG neurons. The results show that silk preserves DRG neuronal physiology and is a promising biomaterial platform for the future development of devices with goals including functional recovery of injured neurons, neurite functional outgrowth in vitro, or functional electrostimulation in vivo.
Aquaporin-4 (AQP4) is the predominant water channel in mammalian CNS where it is localized at the perivascular astrocytic foot processes abutting brain microvessels. Several lines of evidence suggest that AQP4 is involved in important homeostatic functions and that Specifically, judged by electron microscopic immunogold analysis, the perivascular density of AQP4 in SN exceeds by 70% the perivascular density of AQP4 in the neocortex. An even larger difference in AQP4 labeling was found for astrocytic processes in the neuropil.Treatment with MPTP further increased (by >30 %) the perivascular AQP4 density in SN, but also increased AQP4 labeling in the neocortex. Our data indicate that the perivascular AQP4 pool in SN is high in normal animals and even higher after treatment with MPTP. This would leave the SN more prone to water accumulation and supports the idea that AQP4 could be involved in the pathogenesis of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.