Three products hydrocyclone screen (TPHS) can be considered as the combination of a conventional hydrocyclone and a cylindrical screen. In this device, particles are separated based on size under the centrifugal classification coupling screening effect. The objective of this work is to explore the characteristics of fluid flow in TPHS using the computational fluid dynamics (CFD) simulation. The 2 million grid scheme, volume fraction model, and linear pressure–strain Reynolds stress model were utilized to generate the economical grid-independence solution. The pressure profile reveals that the distribution of static pressure was axisymmetric, and its value was reduced with the increasing axial depth. The maximum and minimum were located near the tangential inflection point of the feed inlet and the outlets, respectively. However, local asymmetry was created by the left tangential inlet and the right screen underflow outlet. Furthermore, at the same axial height, the static pressure gradually decreased along the wall to the center. Near the cylindrical screen, the pressure difference between the inside and the outside cylindrical screen dropped from positive to negative as the axial depth increased from −35 to −185 mm. Besides, TPHS shows similar distributions of turbulence intensity I, turbulence kinetic energy k, and turbulence dissipation rate ε; i.e., the values fell with the decrease in axial height. Meanwhile, from high to low, the pressure values are distributed in the feed chamber, the cylindrical screen, and conical vessel; the value inside the screen was higher than the outer value.