Three products hyrdrocyclone screen (TPHS) has been proposed for particle separation based on size. In TPHS, a cylindrical screen was embedded in a conventional hydrocyclone (CH) to combine the centrifugal classification and screening to particle separation based on size. The industrial application of TPHS indicates its better device performance than CH. Although, the earlier studies reveal some common understanding for TPHS, the information of the absent air column remains unknown. Hence, the combination of physical experiment and numerical simulation was considered involving a 75 mm TPHS for this knowledge gap. First, both the computational fluid dynamics (CFD) simulation with Reynolds stress mode and the physical experiment with a high-definition camera illustrate the development process details of a flow field in TPHS. That is, the water was imported along the tangential inlet into TPHS; then under the effects of the feed chamber wall and gravity, the liquid phase spiraled downward until the cylindrical screen passed through the sieve; as the liquid moved to the spigot, it could be discharged in time due to the small underflow port, thus the volume fraction of air rapidly reduced from 1 to 0; subsequently the water filled the TPHS and the absent air column could be observed. Furthermore, the distribution comparisons of air volume fraction and static pressure show that TPHS displayed the absent air core with the negative static pressure in the center region along the z-axis, while CH displayed the opposite features. In addition, despite the different inlet velocity, TPHS consistently presented the vanished air column which could be ascribed to the fact that the present cylindrical screen resulted in positive static pressure distribution inside TPHS.
Coal-based activated carbons (CACs) have excellent valuable applications, and have been industrially produced. However, ultra-fine coal-based activated carbons (UCACs) and their removal of methylene blue (MB) have rarely been reported in the present literature. Two kinds of UCACs were obtained in this paper and the adsorption test of MB was carried out. The adsorption performance of MB on UCAC was simulated by Grand Canonical Monte Carlo (GC-MC) method. The experimental results were validated by molecular simulation, and the adsorption mechanism was investigated. The adsorption amount of MB, the d50, and specific surface area values of the UCACnew (obtained by the new method) and UCACcm (obtained by the conventional chemical method) were 746.95 mg/g, 12.54 μm, 1225.36 m2/g and 652.77 mg/g, 12.10 μm, 713.76 m2/g, respectively. The results of the molecular simulation calculations were consistent with the pattern of magnitude of the experimental results. The peak of the adsorption concentration occurred near 6 Å on the pore surface. The interaction energy of MB molecules with carboxyl groups was much larger than with hydroxyl groups. Van der Waals forces dominated the adsorption process, with a contribution of >60% in both cases.
The online measurement of coal ash has overcome the shortcomings of chemical tests. However, there could be large fluctuations and errors in the results of online ash monitors because of the transient change in coal quality resulting from different geological conditions in the mining process. In this study, to resolve the problems of the dual-energy γ-ray online ash monitor in the Linhuan Coal Preparation Plant, we investigated the internal factors, such as the composition of multimineral and multicoal, and external factors, such as the moisture and impurities, which affect the measurement results of the coal ash monitor. Furthermore, we developed a mathematical model to determine the effect of relevant factors on the coefficient of the online ash monitor, which revealed the relationship between coal composition and the parameters of the ash monitor, ensuring the stable and accurate measurement of ash in clean coal. The method of determining parameters used in the case of coal blending has been applied in the Linhuan Coal Preparation Plant. By comparing with tested ash content, the average absolute error and relative error for daily ash content measured in April are 0.21 and 2.18%, respectively. Meanwhile, it shows certain accuracy and reproducibility while opposed to the daily average absolute error of 0.22 and relative error of 2.39% in May.
The three products hydrocyclone screen (TPHS), a branch of the hydrocyclone, effectively removes the fish-hook effect, which has been used in the industrial field. The current cylindrical screen in the TPHS generates the characteristic flow known as the screen underflow, which has a significant impact on device performance. To investigate the flow behaviour of the fluid passing through the screen, a combination of a dynamic analysis and a numerical simulation was used. The permeating process in the TPHS was abstracted by a simple fan mode in this work to generate the flow-rate equations and the driving-force models. The pressure difference was the driving force for the screen penetration in the ideal fluid, but it also included a viscous force in the viscous fluid. Furthermore, at the same inlet velocity, the viscous fluid had a higher flow rate than the ideal, indicating that the viscosity promoted the fluid penetration. Meanwhile, as the inlet velocity increased, the mass flow of the screen backflow increased, while the corresponding proportion first rose to a peak then dropped and then gradually stabilised. Furthermore, a flow equation for the screen underflow in the TPHS was developed, which is related to the structural parameters (the rotation radius, the length of the cylindrical screen, the aperture size, and the open-area percentage) and the process parameters (the dynamic viscosity of the fluid and the pressure difference between the feed inlet and the screen outlet).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.