Microhomology-mediated end joining (MMEJ) is a major pathway for Ku-independent alternative nonhomologous end joining, which contributes to chromosomal translocations and telomere fusions, but the underlying mechanism of MMEJ in mammalian cells is not well understood. In this study, we demonstrated that, distinct from Ku-dependent classical nonhomologous end joining, MMEJ-even with very limited end resection-requires cyclin-dependent kinase activities and increases significantly when cells enter S phase. We also showed that MMEJ shares the initial end resection step with homologous recombination (HR) by requiring meiotic recombination 11 homolog A (Mre11) nuclease activity, which is needed for subsequent recruitment of Bloom syndrome protein (BLM) and exonuclease 1 (Exo1) to DNA double-strand breaks (DSBs) to promote extended end resection and HR. MMEJ does not require S139-phosphorylated histone H2AX (γ-H2AX), suggesting that initial end resection likely occurs at DSB ends. Using a MMEJ and HR competition repair substrate, we demonstrated that MMEJ with short end resection is used in mammalian cells at the level of 10-20% of HR when both HR and nonhomologous end joining are available. Furthermore, MMEJ is used to repair DSBs generated at collapsed replication forks. These studies suggest that MMEJ not only is a backup repair pathway in mammalian cells, but also has important physiological roles in repairing DSBs to maintain cell viability, especially under genomic stress.BLM/Exo1 | CtIP | DNA repair pathway | DNA damage | genome stability D NA double-strand breaks (DSBs) can be repaired by multiple pathways. The classical nonhomologous end joining (C-NHEJ) pathway relies on Ku70/Ku80 and ligates DSB ends without a template (1). Homologous recombination (HR), an error-free pathway, uses a homologous template to repair DSBs (2) and is initiated by end resection from DSB ends to generate a long stretch of singlestrand DNA (ssDNA) for strand invasion. Although C-NHEJ is active throughout the cell cycle, HR is used when cells enter S and G2 because cyclin-dependent kinases (CDKs) are needed for promoting end resection to activate HR (3-5).In the absence of C-NHEJ factors such as Ku70, Ku80, or DNA ligase IV, robust alternative nonhomologous end joining (alt-NHEJ) activity is observed in various organisms including yeast and mammals (6, 7). Many alt-NHEJ events, classified as microhomology-mediated end joining (MMEJ), require end resection and join the ends by base pairing at microhomology sequences (5-25 nucleotides), resulting in deletions at the junctions (6). However, other alt-NHEJ pathways without using microhomology regions also exist.Genetic analyses in yeast reveal that MMEJ is Rad52-independent, distinguishing it from HR and single-strand annealing (SSA) repair pathways, whereas the Mre11-Rad50-Xrs2 (MRX) complex and DNA ligase IV are needed for MMEJ (8-10). Further studies suggest that in yeast, Srs2 helicase, Sae2 nuclease [CtBP-interacting protein (CtIP) homologue], Tel1 [ataxia telangiectasia mutated (A...