As a ubiquitous post-translation modification process, protein phosphorylation has proven to be a key mechanism in regulating the function of several membrane proteins, including transporters and channels. Connexins, pannexins, and innexins are protein families that form gap junction channels essential for intercellular communication. Connexins have been intensely studied, and most of their isoforms are known to be phosphorylated by protein kinases that lead to modifications in tyrosine, serine, and threonine residues, which have been reported to affect, in one way or another, intercellular communication. Despite the abundant reports on changes in intercellular communication due to the activation or inactivation of numerous kinases, the molecular mechanisms by which phosphorylation alters channel gating properties have not been elucidated completely. Hence, this chapter will cover some of the current, relevant research that attempt to explain how phosphorylation triggers and/or modulates gap junction channel gating.