Manganese oxides (MnOx ) are considered to be promising catalysts for water oxidation. Building on our previous studies showing that the catalytic activity of MnOx films electrodeposited from aqueous electrolytes is improved by a simple heat treatment, we have explored the origin of the catalytic enhancement at an electronic level by X-ray absorption spectroscopy (XAS). The Mn L-edge XA spectra measured at various heating stages were fitted by linear combinations of the spectra of the well-defined manganese oxides-MnO, Mn3 O4 , Mn2 O3 , MnO2 and birnessite. This analysis identified two major manganese oxides, Mn3 O4 and birnessite, that constitute 97 % of the MnOx films. Moreover, the catalytic improvement on heat treatment at 90 °C is related to the conversion of a small amount of birnessite to the Mn3 O4 phase, accompanied by an irreversible dehydration process. Further dehydration at higher temperature (120 °C), however, leads to a poorer catalytic performance.