With the progress in diagnosis, treatment and imaging techniques, there is a growing recognition that impaired right ventricular (RV) function profoundly affects the prognosis of patients with heart failure (HF), irrespective of their left ventricular ejection fraction (LVEF). In addition, right HF (RHF) is a common complication associated with various diseases, including congenital heart disease, myocardial infarction (MI), pulmonary arterial hypertension (PAH) and dilated cardiomyopathy (DCM), and it can manifest at any time after left ventricular assist devices (LVADs). The sodiumāglucose cotransporter 2 (SGLT2) inhibition by gliflozins has emerged as a cornerstone medicine for managing type 2 diabetes mellitus (T2DM) and HF, with an increasing focus on its potential to enhance RV function. In this review, we aim to present an updated perspective on the pleiotropic effects of gliflozins on the right ventricle and offer insights into the underlying mechanisms. We can ascertain their advantageous impact on the right ventricle by discussing the evidence obtained in animal models and monumental clinical trials. In light of the pathophysiological changes in RHF, we attempt to elucidate crucial mechanisms regarding their beneficial effects, including alleviation of RV overload, reduction of hyperinsulinaemia and inflammatory responses, regulation of nutrient signalling pathways and cellular energy metabolism, inhibition of oxidative stress and myocardial fibrosis, and maintenance of ion balance. Finally, this drug class's potential application and benefits in various clinical settings are described, along with a prospective outlook on future clinical practice and research directions.