The emergence of transmissible HIV-1 strains with resistance to antiretroviral drugs highlights a continual need for new therapies. Here we describe a novel acylguanidine-containing compound, 1-(2-(azepan-1-yl)nicotinoyl)guanidine (or SM111), that inhibits in vitro replication of HIV-1, including strains resistant to licensed protease, reverse transcriptase, and integrase inhibitors, without major cellular toxicity. At inhibitory concentrations, intracellular p24Gag production was unaffected, but virion release (measured as extracellular p24Gag ) was reduced and virion infectivity was substantially impaired, suggesting that SM111 acts at a late stage of viral replication. SM111-mediated inhibition of HIV-1 was partially overcome by a Vpu I17R mutation alone or a Vpu W22* truncation in combination with Env N136Y. These mutations enhanced virion infectivity and Env expression on the surface of infected cells in the absence and presence of SM111 but also impaired Vpu's ability to downregulate CD4 and BST2/tetherin. Taken together, our results support acylguanidines as a class of HIV-1 inhibitors with a distinct mechanism of action compared to that of licensed antiretrovirals. Further research on SM111 and similar compounds may help to elucidate knowledge gaps related to Vpu's role in promoting viral egress and infectivity. T he development and scale-up of effective combination antiretroviral therapies have significantly reduced human immunodeficiency virus type 1 (HIV-1)-related morbidity and mortality globally (1); however, selection and transmission of drug-resistant HIV-1 strains remain a concern (2, 3). Thus, new antivirals that overcome drug resistance or act via novel mechanisms are needed. Acylguanidines are a broad class of antiviral compounds that target ion channels and other host and viral factors (4-8). Their anti-HIV-1 activity is exemplified by 5-(N,N-hexamethylene) amiloride (HMA; Fig. 1A) (5, 6), as well as N-(5-(1-methyl-1H-pyrazol-4-yl)naphthalene-2-carbonyl)guanidine (BIT-225; Fig. 1B) (7). HMA and BIT-225 inhibit HIV-1 replication in monocyte-derived macrophages at low micromolar concentrations (6, 7). Moreover, treatment of infected cells with these compounds results in reduced budding and release of viral particles without affecting intracellular viral protein production, suggesting that blockade occurs at a late stage of viral replication (5, 7).
IMPORTANCE
New inhibitors of HIV-1 replication may be useful as therapeutics to counteract drug resistance and as reagents to perform more detailed studies of viral pathogenesis. SM111 is a small molecule that blocks the replication of wild-type and drug-resistant HIV-1 strains by impairing viral release and substantially reducing virion infectivity, most likely through its ability to preventHMA and BIT-225 are both reported to target the HIV-1 accessory protein Vpu, an ϳ81-amino-acid transmembrane protein that is found in HIV-1 and some simian immunodeficiency virus (SIV) lineages and enhances viral replication through multiple mechanisms (...