Genome-scale models of metabolism (GEMs) are key computational tools for the systems-level study of metabolic networks. Here, we describe the ''GEM life cycle,'' which we subdivide into four stages: inception, maturation, specialization, and amalgamation. We show how different types of GEM reconstruction workflows fit in each stage and proceed to highlight two fundamental bottlenecks for GEM quality improvement: GEM maturation and content removal. We identify common characteristics contributing to increasing quality of maturing GEMs drawing from past independent GEM maturation efforts. We then shed some muchneeded light on the latent and unrecognized but pervasive issue of content removal, demonstrating the substantial effects of model pruning on its solution space. Finally, we propose a novel framework for content removal and associated confidence-level assignment which will help guide future GEM development efforts, reduce duplication of effort across groups, potentially aid automated reconstruction platforms, and boost the reproducibility of model development.
ll