19 20 21 22 Physical forces have long been recognized for their effects on the growth, 23 morphology, locomotion, and survival of eukaryotic organisms 1 . Recently, mechanical 24 forces have been shown to regulate processes in bacteria, including cell division 2 , motility 3 , 25 virulence 4 , biofilm initiation 5,6 , and cell shape 7,8 , although it remains unclear how 26 mechanical forces in the cell envelope lead to changes in molecular processes. In Gram-27 negative bacteria, multicomponent protein complexes that form rigid links across the cell 28 envelope directly experience physical forces and mechanical stresses applied to the cell. 29Here we manipulate tensile and shear mechanical stress in the bacterial cell envelope and 30 use single-molecule tracking to show that shear (but not tensile) stress within the cell 31 envelope promotes disassembly of the tripartite efflux complex CusCBA, a system used by 32 E. coli to resist copper and silver toxicity, thereby making bacteria more susceptible to 33 metal toxicity. These findings provide the first demonstration that mechanical forces, such 34 as those generated during colony overcrowding or bacterial motility through submicron 35 pores, can inhibit the contact and function of multicomponent complexes in bacteria. As 36 multicomponent, trans-envelope efflux complexes in bacteria are involved in many 37 processes including antibiotic resistance 9 , cell division 10 , and translocation of outer 38 membrane components 11 , our findings suggest that the mechanical environment may 39 regulate multiple processes required for bacterial growth and survival. 40