2012 Annual IEEE India Conference (INDICON) 2012
DOI: 10.1109/indcon.2012.6420654
|View full text |Cite
|
Sign up to set email alerts
|

Medical image retrieval system for diagnosis of brain tumor based on classification and content similarity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
3

Year Published

2014
2014
2020
2020

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(7 citation statements)
references
References 20 publications
0
4
0
3
Order By: Relevance
“…Pangkalan data imej di hospitalhospital telah meningkat dengan mendadak seiring dengan penggunaannya semasa latihan harian, kajian perubatan dan pendidikan. Data-data imej ini telah disimpan dan diarkibkan di pangkalan data imej perubatan yang juga dikenali sebagai Sistem Pengarkiban Gambar dan Komunikasi (PACS) (Arakeri and Reddy 2012). Pakar radiologi sentiasa merujuk dan membandingkan kes-kes yang serupa untuk mendapatkan cara rawatan yang sesuai.…”
Section: Perpustakaanunclassified
See 2 more Smart Citations
“…Pangkalan data imej di hospitalhospital telah meningkat dengan mendadak seiring dengan penggunaannya semasa latihan harian, kajian perubatan dan pendidikan. Data-data imej ini telah disimpan dan diarkibkan di pangkalan data imej perubatan yang juga dikenali sebagai Sistem Pengarkiban Gambar dan Komunikasi (PACS) (Arakeri and Reddy 2012). Pakar radiologi sentiasa merujuk dan membandingkan kes-kes yang serupa untuk mendapatkan cara rawatan yang sesuai.…”
Section: Perpustakaanunclassified
“…Catatan oleh setiap pakar radiologi adalah berbeza dan tugas ini amat memerihkan jika melibatkan pangkalan data imej yang besar. Oleh itu, kelemahan-kelemahan dalam TBIRS tersebut telah mendorong ahli-ahli kajian memberikan tumpuan kepada CBIRS (Arakeri et al 2012;Madugunki et al 2011).…”
Section: Tbirs Dan Cbirsunclassified
See 1 more Smart Citation
“…However, a limitation of this system is the construction of the global matrix which is prohibitively difficult for large collections. Arakeri et al [12] classify brain tumours based on the rotation invariant shape features (circularity and irregularity) and texture features from tumour region into benign and malignant classes and then use the wavelet based Fourier descriptors and local binary patterns for checking similarity. Shape similarity is calculated using Euclidean distance and the texture similarity is calculated using Chisquare distance.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Shape similarity is calculated using Euclidean distance and the texture similarity is calculated using Chisquare distance. Experiments show that this system [12] works better than the earlier developed systems [13][14] [15]. Liu [16] developed a CT lung image retrieval system for assisting differential diagnosis.…”
Section: Literature Reviewmentioning
confidence: 99%