El análisis de los servicios ecosistémicos puede aportar conocimientos importantes sobre cómo se procesan y se obtienen los bienes del sistema agroindustrial azucarero. Para este trabajo, se recopilaron 346 datos del procesamiento industrial de la caña de azúcar en tres zafras, en la agroindustria del municipio Calimete, Provincia Matanzas (Cuba), con el objetivo de emplear algoritmos de aprendizaje automáticos, para predicciones relacionadas a datos biofísicos y económicos. Se analizaron siete predictores y mediante best subset selection, se identificó la combinación de rendimiento potencial en caña y pérdidas industriales totales, para predecir el servicio de provisión azucarera, mediante la regresión lineal múltiple. Se ajustó, también, un segundo modelo, que predice el efecto económico de las pérdidas industriales. En ambos modelos, se logró explicar por encima del 70 % de la variabilidad observada, en las variables dependientes, con un test F significativo (p-value: < 0,05), además de cumplirse con las condiciones de diagnóstico y validación.