In a warming world, urban environmental stresses are exacerbated by population-increase-induced development of grey infrastructure that usually leaves minimal scope for blue (and green) elements and processes, potentially resulting in mismanagement of stormwater and flooding issues. This paper explores how urban growth planning in the megacity of Dhaka, Bangladesh can be guided by a blue-green infrastructure (BGI) network that combines blue, green, and grey elements together to provide a multifunctional urban form. We take a three-step approach: First, we analyze the existing spatial morphology to understand potential locations of development and challenges, as well as the types of solutions necessary for water management in different typologies of urban densities. Next, we analyze existing and potential blue and green network locations. Finally, we propose the structural framework for a BGI network at both macro and micro scales. The proposed network takes different forms at different scales and locations and offers different types of flood control and stormwater management options. These can provide directions on Dhaka's future urban consolidation and expansion with a balance of man-made and natural elements and enable environmental, social, spatial, financial, and governance benefits. The paper concludes with some practical implications and challenges for implementing BGI in Dhaka. but in reality, the city-scale imposes immense pressure on ecology and infrastructure with added complications such as fragmented societies, higher inequality, and rising informality [4,5]. Megacities, characterized by numerous decision-making authorities, often struggle to achieve collaboration in solving urban sprawl, land use conversion, and water management problems [6].The rapid process of urbanization in megacities is causing environmental, economic, and social problems. Development has been accompanied by negative consequences for many river systems, including changes in their hydrology and ecology. In recent decades, the increasing frequency of disaster events-including hydro-meteorological disasters-has threatened human lives and infrastructure. One of the most common water-related disasters frequently affecting urban social life, particularly in Asian regions, is flooding [7,8]. Specifically, cities are experiencing pluvial flooding due to increased urbanization and climate change [9][10][11]. Sources of water bodies capable of capturing a significant volume of floodwater are slowly disappearing as the volume of impervious surfaces rapidly escalates. As a result, urban areas are experiencing increasing high pick flow and stormwater runoff incidents that have noticeable adverse effects on social and economic lives [10,12]. Simultaneously, the remaining receiving water bodies have been polluted by mixed stormwater and wastewater, degrading their water quality.In order to address escalating events of environmental dilapidation, resource susceptibilities, booming urban population, and other uncertain impacts from climate chang...