Using a cytological approach, diploid females were found coexisting with rare males in triploid apomictic parthenogenetic populations of the psyllid Cacopsylla myrtilli (W. Wagner, 1947) in Norway, Sweden, Finland and northwest Russia. Diploid females were easily distinguished from triploid apomictic females by the presence of 13 chiasmate bivalents instead of 39 univalent chromosomes at metaphase I. Abundance equaled that of males, but the proportion of males and diploid females was significantly greater in high altitude compared with low altitude populations. Males mated with females but showed no mating preference for diploid females. Lack of genuine bisexual reproduction owing to either asynaptic meiosis in males, or rarity of males with normal meiosis, suggests that diploids are produced in every generation by parthenogenetic females as reversals from triploidy, with their production being enhanced by environmental factor(s) associated with high altitude. This is further supported by the observation that within a population the COI haplotype found in rare males was the same as that in parthenogenetic triploid females. Thus, in northern Europe parthenogenesis in C. myrtilli is obligate, geographic parthenogenesis. Bisexual populations of C. myrtilli should be looked for in Central and Southern Europe. From the evolutionary point of view, the presence of males and diploid females with normal meiosis in parthenogenetic populations could be significant as they exhibit the potential to re-evolve either a new sexual species of parthenogenetic ancestry or a new parthenogenetic species by contagious parthenogenesis.