On reaching the oviduct, spermatozoa are retained in the isthmic region of the oviduct until ovulation occurs. The essential steps of capacitation are co-ordinated in this region. In this study, a primary cell culture system of oviductal epithelial cells was established to investigate sperm binding to oviductal epithelium and modulation of sperm function during incubation under capacitating conditions in co-culture with oviductal epithelial cells. Epithelial cells were stripped from the oviducts of sows and cultivated for 5-7 days on Lab-Tek Chamber slides on Matrigel. The preparations on chamber slides and suspensions of control spermatozoa were incubated for 3 h in Tyrode's albumin lactate pyruvate (TALP) medium. At 3, 30, 60, 90 and 180 min the free-swimming spermatozoa were collected by washing, and membrane integrity, tyrosine phosphorylation patterns and [Ca(2+)](i) of bound, unbound and control spermatozoa were assessed with fluorescent probes (propidium iodide, Cy-3 and fluo-3-AM). The cells bound to oviductal epithelial cells showed reduced cytosolic Ca(2+) concentration, reduced and almost absent tyrosine phosphorylation of membrane proteins and higher viability at the time of the first sampling. Increases in Ca(2+) concentration and cell death occurred much more slowly during incubation in cells bound to oviductal epithelial cells compared with free-swimming spermatozoa, and no changes in tyrosine phosphorylation were observed. The preferential binding of viable, low-Ca(2+) cells with suppressed tyrosine phosphorylation and slower functional modulation of boar spermatozoa attached to oviductal epithelial cells might represent a mechanism for selecting functionally competent spermatozoa and prolonging their lifespan by delaying capacitation in the oviductal reservoir.