RationaleMineral particles in the lung cause inflammation and silicosis. In myeloid and bronchial epithelial cells the inflammasome plays a role in responses to crystalline silica. Thioredoxin (TRX) and its inhibitory protein TRX-interacting protein link oxidative stress with inflammasome activation. We investigated inflammasome activation by crystalline silica polymorphs and modulation by TRX in vitro, as well as its localization and the importance of silica surface reactivity in rats.MethodsWe exposed bronchial epithelial cells and differentiated macrophages to silica polymorphs quartz and cristobalite and measured caspase-1 activity as well as the release of IL-1β, bFGF and HMGB1; including after TRX overexpression or treatment with recombinant TRX. Rats were intratracheally instilled with vehicle control, Dörentruper quartz (DQ12) or DQ12 coated with polyvinylpyridine N-oxide. At days 3, 7, 28, 90, 180 and 360 five animals per treatment group were sacrificed. Hallmarks of silicosis were assessed with Haematoxylin-eosin and Sirius Red stainings. Caspase-1 activity in the bronchoalveolar lavage and caspase-1 and IL-1β localization in lung tissue were determined using Western blot and immunohistochemistry (IHC).ResultsSilica polymorphs triggered secretion of IL-1β, bFGF and HMGB1 in a surface reactivity dependent manner. Inflammasome readouts linked with caspase-1 enzymatic activity were attenuated by TRX overexpression or treatment. At day 3 and 7 increased caspase-1 activity was detected in BALF of the DQ12 group and increased levels of caspase-1 and IL-1β were observed with IHC in the DQ12 group compared to controls. DQ12 exposure revealed silicotic nodules at 180 and 360 days. Particle surface modification markedly attenuated the grade of inflammation and lymphocyte influx and attenuated the level of inflammasome activation, indicating that the development of silicosis and inflammasome activation is determined by crystalline silica surface reactivity.ConclusionOur novel data indicate the pivotal role of surface reactivity of crystalline silica to activate the inflammasome in cultures of both epithelial cells and macrophages. Inhibitory capacity of the antioxidant TRX to inflammasome activation was evidenced. DQ12 quartz exposure induced acute and chronic functional activation of the inflammasome in the heterogeneous cell populations of the lung in associated with its crystalline surface reactivity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12989-014-0058-0) contains supplementary material, which is available to authorized users.
Femtosecond photodisruption has the potential to become an attractive tool for intrastromal refractive surgery.
The sperm reservoir in the caudal isthmus of the oviduct of a number of species is created by binding of spermatozoa to oviductal epithelium. The sperm reservoir fulfills a number of functions such as control of sperm transport, maintenance of sperm viability and modulation of capacitation. The initial capacities of ejaculated and epididymal boar spermatozoa to bind to oviductal epithelium were investigated using a modified pig oviductal explant assay. The number of spermatozoa that bound to 0.01 mm(2) of explant surface was used as the parameter of binding capacity. Binding of spermatozoa to oviductal epithelial explants was dependent in a linear manner on the number of spermatozoa added (P < or = 0.05). No difference was found in initial sperm binding between isthmic and ampullar explants. There was no effect of the stage of the oestrous cycle or the reproductive status of the female donor. There was a significant effect (P < or = 0.05) of the individual boar on the binding index. The binding index correlated negatively with the percentage of spermatozoa with cytoplasmic droplets and the percentage of morphologically abnormal spermatozoa (P < or = 0.05). Epididymal spermatozoa showed significantly lower initial binding capability than did ejaculated spermatozoa from the same boars (P < or = 0.05); therefore, components of seminal plasma may play a role in the binding process. The individual differences revealed by this study and their relation to morphology and contact of spermatozoa with seminal fluid indicate a selective function of sperm-oviduct binding.
Summary Extensive light and electron microscope studies (transmission and scanning electron microscopy) of the bronchioles and alveolar region, in 28 horses suffering chronic obstructive pulmonary disease (COPD) and eight control horses, revealed good correlation between clinical severity and morphological changes. In the bronchiolar epithelium the non‐ciliated bronchiolar epithelial (Clara) cells, in particular, showed ultrastructural alterations and, even in the mild stages of disease, these presented degenerative changes and lack of differentiation. Together with loss of granulation in the Clara cells and metaplasia of the goblet cells, cells were seen with unusual intracytoplasmic lamellar inclusion, the number of which increased sharply with clinical severity. The focal changes in the alveolar region were necrosis of type I epithelial cells, alveolar fibrosis of varying degrees with type II epithelial transformation and emphysema or hyperinflation, with an increase in Kohn's pores. Some horse also showed morphological signs of interference with the surfactant system, in the form of marked cysts with lamellar structure. The alveolar changes were mostly in the peribronchiolar region and were, therefore, interpreted as reactive processes. No conclusions as to the aetiology of equine COPD can be derived from these morphological investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.