The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8 + T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response, but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.
Fertilization success cannot be attributed solely to the absolute number of vital, motile, morphologically normal spermatozoa inseminated into the female but more especially to their functional competence. A range of in vitro tests has therefore been developed to monitor crucial aspects of sperm function: their ability to adapt to changing osmotic conditions, to bind to the oviductal epithelium, and to undergo capacitation in an appropriate and timely manner. The tests employ flow cytometry in conjunction with fluorescent techniques, electronic cell counting, and computer-assisted image area analysis. The highly quantitative analysis provided by electronic sizing and flow cytometry enables assessment of representative cell numbers in a very short time with high reproducibility. More importantly, it allows the detection of physiological heterogeneity within an ejaculate in terms of the development of cell subpopulations and enables the kinetic analysis of changes in living cell suspensions. The tests offer a promising strategy for evaluating fertility in domestic animals. The capability for volume regulation ensures that sperm recover from the tonic shocks experienced at ejaculation and during cryopreservation. Assessment of capacitation in vitro provides valuable information on both the sperm's ability to respond to fertilizing conditions and the sequence and rates of ongoing capacitation/destabilization processes. The monitoring of response to capacitating conditions in kinetic terms allows the sensitive and adequate detection of sperm populations expressing fertilization attributes and their ability to respond to external stimuli in a timely manner. However, subfertility is likely to be associated with a suboptimal response (i.e. too high or too low) rather than a minimal response.
The sperm reservoir in the caudal isthmus of the oviduct of a number of species is created by binding of spermatozoa to oviductal epithelium. The sperm reservoir fulfills a number of functions such as control of sperm transport, maintenance of sperm viability and modulation of capacitation. The initial capacities of ejaculated and epididymal boar spermatozoa to bind to oviductal epithelium were investigated using a modified pig oviductal explant assay. The number of spermatozoa that bound to 0.01 mm(2) of explant surface was used as the parameter of binding capacity. Binding of spermatozoa to oviductal epithelial explants was dependent in a linear manner on the number of spermatozoa added (P < or = 0.05). No difference was found in initial sperm binding between isthmic and ampullar explants. There was no effect of the stage of the oestrous cycle or the reproductive status of the female donor. There was a significant effect (P < or = 0.05) of the individual boar on the binding index. The binding index correlated negatively with the percentage of spermatozoa with cytoplasmic droplets and the percentage of morphologically abnormal spermatozoa (P < or = 0.05). Epididymal spermatozoa showed significantly lower initial binding capability than did ejaculated spermatozoa from the same boars (P < or = 0.05); therefore, components of seminal plasma may play a role in the binding process. The individual differences revealed by this study and their relation to morphology and contact of spermatozoa with seminal fluid indicate a selective function of sperm-oviduct binding.
Sperm are stored in the isthmic region of the oviduct under conditions that maintain viability and suppress early capacitation steps until ovulation occurs. The initial contact between sperm and oviductal epithelium is mediated by carbohydrate-protein interactions. In the pig, the carbohydrate recognition system has been shown to involve oligomannosyl structures. The spermadhesins AWN and AQN1 are the dominant porcine carbohydrate-binding sperm proteins. The objective of this study was to demonstrate that AQN1 contributes to sperm binding to the oviductal epithelium. AQN1 showed a broad carbohydrate-binding pattern as it recognizes both alpha- and beta-linked galactose as well as Manalpha1-3(Manalpha1-6)Man structures, whereas AWN bound only the galactose species. Binding of ejaculated sperm to oviductal epithelium was inhibited by addition of AQN1 but not by AWN. Mannose-binding sites were localized over the rostral region of the sperm head. Flow cytometry showed that, under capacitating conditions, the population of live sperm was shifted within 30 min toward an increase in the proportion of cells with low mannose- and high galactose-binding. The loss of mannose-binding sites was accompanied by the loss of AQN1 in sperm extracts and the significant reduction in the sperm-oviduct binding. The oviductal epithelium was shown by GNA-lectin histochemistry and by SDS-PAGE and lectin blotting of the apical membrane fraction to express mannose components that could be recognized by AQN1. These results demonstrate that the sperm lectin AQN1 fulfils the criteria for an oviduct receptor in the pig and may play a role in the formation of the oviductal sperm reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.