During the past 20 years there has been a remarkable growth in the use of fluorescence in the biological sciences. Fluorescence is now a dominant methodology used extensively in biochemistry, biophysics, biotechnology, medical diagnostics, flow cytometry, DNA sequencing and genetic analysis to name a few. It is one of the most powerful methods to study protein folding, dynamics, assembly and interactions as well as membrane structure. α-Synuclein belongs to the class of intrinsically disordered proteins lacking of a well-folded structure under physiological conditions. The conversion of α-synuclein from a soluble monomer to an insoluble fibril may underlie the neurodegeneration associated with Parkinson's disease (PD). Although the exact mechanism of α-synuclein toxicity is still unknown, it has been proposed that disturbs membrane structure, leading to increased membrane permeability and eventual cell death. This review highlights the significant role played by fluorescence techniques in unraveling the nature of interactions between α-synuclein and membranes and its implications in PD.