Soluble oligomeric aggregates of alpha-synuclein have been implicated to play a central role in the pathogenesis of Parkinson's disease. Disruption and permeabilization of lipid bilayers by alpha-synuclein oligomers is postulated as a toxic mechanism, but the molecular details controlling the oligomer-membrane interaction are still unknown. Here we show that membrane disruption strongly depends on the accessibility of the hydrophobic membrane core and that charge interactions play an important but complex role. We systematically studied the influence of the physical membrane properties and solution conditions on lipid bilayer disruption by oligomers using a dye release assay. Varying the lipid headgroup composition revealed that membrane disruption only occurs for negatively charged bilayers. Furthermore, the electrostatic repulsion between the negatively charged alpha-synuclein and the negative surface charge of the bilayer inhibits vesicle disruption at low ionic strength. The disruption of negatively charged vesicles further depends on lipid packing parameters. Bilayer composition changes that result in an increased lipid headgroup spacing make vesicles more prone to disruption, suggesting that the accessibility of the bilayer hydrocarbon core modulates oligomer-membrane interaction. These data shed important new insights into the driving forces governing the highly debated process of oligomer-membrane interactions.
BackgroundThe question of how the aggregation of the neuronal protein α-synuclein contributes to neuronal toxicity in Parkinson's disease has been the subject of intensive research over the past decade. Recently, attention has shifted from the amyloid fibrils to soluble oligomeric intermediates in the α-synuclein aggregation process. These oligomers are hypothesized to be cytotoxic and to permeabilize cellular membranes, possibly by forming pore-like complexes in the bilayer. Although the subject of α-synuclein oligomer-membrane interactions has attracted much attention, there is only limited evidence that supports the pore formation by α-synuclein oligomers. In addition the existing data are contradictory.Methodology/Principal FindingsHere we have studied the mechanism of lipid bilayer disruption by a well-characterized α-synuclein oligomer species in detail using a number of in vitro bilayer systems and assays. Dye efflux from vesicles induced by oligomeric α-synuclein was found to be a fast all-or-none process. Individual vesicles swiftly lose their contents but overall vesicle morphology remains unaltered. A newly developed assay based on a dextran-coupled dye showed that non-equilibrium processes dominate the disruption of the vesicles. The membrane is highly permeable to solute influx directly after oligomer addition, after which membrane integrity is partly restored. The permeabilization of the membrane is possibly related to the intrinsic instability of the bilayer. Vesicles composed of negatively charged lipids, which are generally used for measuring α-synuclein-lipid interactions, were unstable to protein adsorption in general.Conclusions/SignificanceThe dye efflux from negatively charged vesicles upon addition of α-synuclein has been hypothesized to occur through the formation of oligomeric membrane pores. However, our results show that the dye efflux characteristics are consistent with bilayer defects caused by membrane instability. These data shed new insights into potential mechanisms of toxicity of oligomeric α-synuclein species.
Membrane disruption by oligomeric a-synuclein (aS) is considered a likely mechanism of cytotoxicity in ParkinsonÕs disease (PD). However, the mechanism of oligomer binding and the relation between binding and membrane disruption is not known. We have visualized aS oligomer-lipid binding by fluorescence microscopy and have measured membrane disruption using a dye release assay. The data reveal that oligomeric aS selectively binds to membranes containing anionic lipids and preferentially accumulates into liquid disordered (Ld) domains. Furthermore, we show that binding of oligomers to the membrane and disruption of the membrane require different lipid properties. Thus membrane-bound oligomeric aS does not always cause bilayer disruption.
Good luck! The physiologically relevant conformation of membrane‐bound α‐Synuclein (αS) can be either a horseshoe or an extended helix structure. Experimental data obtained by site‐directed spin labeling in combination with pulsed electron paramagnetic resonance provide compelling evidence of the coexistence of the horseshoe structure and an extended helix of αS bound to a membrane surface, and potentially resolve the debate on the structure of membrane‐bound αS.
alpha-Synuclein is a small neuronal protein that has been implicated to play an important role in Parkinson's disease. Genetic mutations and multiplications in the alpha-synuclein gene can cause familial forms of the disease. In aggregated fibrillar form, alpha-synuclein is the main component of Lewy bodies, the intraneuronal inclusion bodies characteristic of Parkinson's disease. The loss of functional dopaminergic neurons in Parkinson's disease may be caused by a gain in toxic function of the protein. Elucidating if this gain of toxic function is related to the aggregation of alpha-synuclein may be vital in understanding Parkinson's disease. Although there are many ideas on how alpha-synuclein could be involved in the disease, this review will focus on the amyloid pore hypothesis. This hypothesis assumes that aggregation intermediates or oligomers are more likely to be toxic than monomeric or fibrillar forms of the protein. Oligomeric species are thought to exercise their toxicity through permeabilization of cellular membranes. Membrane pore formation by an oligomeric intermediate might play a role in other neurodegenerative disorders in which protein aggregation and amyloid formation play a role, such as Alzheimer's disease. We will discuss the role of this hypothesis in Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.