2018 Third International Conference on Informatics and Computing (ICIC) 2018
DOI: 10.1109/iac.2018.8780410
|View full text |Cite
|
Sign up to set email alerts
|

Meme Opinion Categorization by Using Optical Character Recognition (OCR) and Naïve Bayes Algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
7
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
3
3

Relationship

0
10

Authors

Journals

citations
Cited by 16 publications
(8 citation statements)
references
References 8 publications
0
7
0
1
Order By: Relevance
“…Another example of traditional OCR approach is implemented using Radial Basis Function (RBF) [12]. Random forests [13] and Naive Bayes [14] algorithm are also evaluated for optical character recognition. All the aforementioned approaches involved aspect of classification, which wouldn't have resulted in success if not for intelligent feature description.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Another example of traditional OCR approach is implemented using Radial Basis Function (RBF) [12]. Random forests [13] and Naive Bayes [14] algorithm are also evaluated for optical character recognition. All the aforementioned approaches involved aspect of classification, which wouldn't have resulted in success if not for intelligent feature description.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Ekstraksi informasi merupakan salah satu bagian dari Pemrosesan Bahasa Alami (Natural Language Processing). Pada penelitian ini proses ektraksi akan dilakukan dengan menggunakan metode Optical Character Recognition (OCR), dimana proses ini dilakukan untuk mengubah pada bagian teks dari sebuah citra optis yang memiliki dokumen atau teks didalamnya (Amalia, Sharif, Haisar, Gunawan, & Nasution, 2018). Menurut Cherriet, OCR adalah sebuah aplikasi komputer yang digunakan untuk mengidentifikasi citra huruf maupun angka untuk dikonversi ke dalam bentuk yang dapat diubah.…”
Section: Pendahuluanunclassified
“…Williams et al (2016) studied the racial microaggressions and perceptions of Internet memes. A few researchers (Amalia et al, 2018;Verma et al, 2020) have tried to distill the inherent sentiment of the meme contents.…”
Section: Related Workmentioning
confidence: 99%