Günümüzde toz yatak füzyon birleştirme (TYB) metal eklemeli imalat, karmaşık geometrili parça imalatında sıklıkla tercih edilmesine rağmen, parça imalat süreçlerinin gerçek zamanlı izlenmesi yeterli düzeyde değildir. Bu nedenle makine kontrol sistemi büyük ölçüde açık döngü olarak kalmaktadır. Bazı metal eklemeli imalat makineleri toz yatağının izlenmesini görüntülerle sunarken, toz yatağı katmanında oluşabilecek kusurların otomatik tespiti ve kontrol sistemini uyarıcı yeteneğinin olduğuna rastlanmamıştır. Çalışmada, herhangi bir TYB metal eklemeli imalat makinesinde gerçek zamanlı kontrol sisteminin bir bileşeni olma potansiyeline sahip toz yatağı görüntülerinin yerinde izlenmesi ve kusurların tespiti için makine öğrenmesi temelli örnek bir yaklaşım sunulmuştur. Makine öğrenmesinin alt alanlarından olan derin öğrenme yöntemi kullanılarak, işlemin bir katmanının oluşturulmasında meydana gelebilecek kusurları tespitine yönelik sınıflandırma yapılmıştır. Kusurları algılama ve sınıflandırma işlemi evrişimli sinir ağları modeli kullanılarak yerine getirilmiştir. Modelin eğitimi ve performansı için veri seti, EOS M290 makinesinde imal edilmiş örnek bir üç boyutlu yapının fotoğrafları ile oluşturulmuştur. VGG-16, InceptionV3 ve DenseNet ön öğrenmeli modellerinden transfer öğrenimi yapılarak en iyi performans %86 doğruluk değeri ile VGG-16 modelinde elde edilmiştir.