We discuss two independent, large scale experiments performed in two wave basins of different dimensions in which the statistics of the surface wave elevation are addressed. Both facilities are equipped with a wave maker capable of generating waves with prescribed frequency and directional properties. The experimental results show that the probability of the formation of large amplitude waves strongly depends on the directional properties of the waves. Sea states characterized by long-crested and steep waves are more likely to be populated by freak waves with respect to those characterized by a large directional spreading. DOI: 10.1103/PhysRevLett.102.114502 PACS numbers: 47.35.Bb, 47.55.NÀ An important task in the study of surface gravity waves is the determination of the probability density function of the surface wave elevation. The knowledge of the probability of the occurrence of large amplitude waves is essential for different engineering purposes such as the prediction of wave forces and structural responses or the design of offshore structures. A deep comprehension of the physical mechanisms of the generation of such waves is also a first step towards the development of an operational methodology for the probabilistic forecast of freak waves. It is well known that surface gravity waves obey nonlinear equations and, to date, a universal tool suitable for deriving the probability distribution function of a nonlinear system has not yet been developed. Fortunately, water waves are on average weakly nonlinear [1,2] and solutions can be generally written as power series, where the small parameter, in the case of deep water waves, is the wave steepness ". Strong departure from Gaussian statistics of the surface elevation can be observed if third order nonlinearities are considered. At such order it has been shown numerically [3] and theoretically [4] that, for long-crested waves, a generalization of the Benjamin-Feir instability [5] (or modulational instability [2]) for random spectra can take place [6]. This instability, that corresponds to a quasiresonant four-wave interaction in Fourier space, results in the formation of large amplitude waves (or rogue waves) [7] which affect the statistical properties of the surface elevation (see, for example, [8]). This is particularly true if the ratio between the wave steepness and the spectral bandwidth, known as the Benjamin-Feir Index (BFI), is large [4]. We mention that rogue waves have also been recently observed in optical systems [9] and in acoustic turbulence in He II [10] where giant waves are observed during an inverse cascade process.We emphasize that in many different fields of physics (plasmas [11,12], nonlinear optics [13,14], chargedparticle beam dynamics [15,16]) the modulational instability plays an important role; under suitable physical conditions a nonlinear Schrödinger equation can be derived and the modulational instability can be analyzed directly with this equation [2]. A major question which has to be addressed (and is the subject of the pre...