2020
DOI: 10.48550/arxiv.2012.12076
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

MetaAugment: Sample-Aware Data Augmentation Policy Learning

Abstract: Automated data augmentation has shown superior performance in image recognition. Existing works search for datasetlevel augmentation policies without considering individual sample variations, which are likely to be sub-optimal. On the other hand, learning different policies for different samples naively could greatly increase the computing cost. In this paper, we learn a sample-aware data augmentation policy efficiently by formulating it as a sample reweighting problem. Specifically, an augmentation policy net… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(6 citation statements)
references
References 27 publications
0
6
0
Order By: Relevance
“…This survey is focused on the two DA areas: data augmentation via mixing images and data augmentation policy selection (Cubuk et al 2019;Ho et al 2019;Lim et al 2019;Cubuk et al 2020;Hataya et al 2020;Li et al 2020;Zhang et al 2020;Zhou et al 2020;Mounsaveng et al 2020). The former genre is further divided into methods that erase part of the image Zhong et al 2020;Lopes et al 2019) and image mixing methods (Zhang et al 2018;Yun et al 2019;Guo et al 2019;Verma et al 2019;Lee et al 2020;Walawalkar et al 2020;Kim et al 2020;Inoue 2018;Tokozume et al 2018a;Summers and Dinneen 2019;Takahashi et al 2018;Hendrycks et al 2020;Zhou et al 2021;Huang et al 2020;Kim et al 2021;Uddin et al 2020) which can be further divided based on particular properties, e.g.…”
Section: Discussionmentioning
confidence: 99%
See 4 more Smart Citations
“…This survey is focused on the two DA areas: data augmentation via mixing images and data augmentation policy selection (Cubuk et al 2019;Ho et al 2019;Lim et al 2019;Cubuk et al 2020;Hataya et al 2020;Li et al 2020;Zhang et al 2020;Zhou et al 2020;Mounsaveng et al 2020). The former genre is further divided into methods that erase part of the image Zhong et al 2020;Lopes et al 2019) and image mixing methods (Zhang et al 2018;Yun et al 2019;Guo et al 2019;Verma et al 2019;Lee et al 2020;Walawalkar et al 2020;Kim et al 2020;Inoue 2018;Tokozume et al 2018a;Summers and Dinneen 2019;Takahashi et al 2018;Hendrycks et al 2020;Zhou et al 2021;Huang et al 2020;Kim et al 2021;Uddin et al 2020) which can be further divided based on particular properties, e.g.…”
Section: Discussionmentioning
confidence: 99%
“…An open question, which we believe is worth investigation is application of DAPS methods to more complex DA techniques, going beyond traditional augmentations. The results presented in Figures 25, 26, 27 suggest that inclusion of more complex erasing or mixing (Cubuk et al 2019;Lim et al 2019;Ho et al 2019;Cubuk et al 2020;Hataya et al 2020;Li et al 2020;Zhang et al 2020;Zhou et al 2020;Mounsaveng et al 2020)…”
Section: Quantitative Evaluationmentioning
confidence: 92%
See 3 more Smart Citations