Automated data augmentation has shown superior performance in image recognition. Existing works search for dataset-level augmentation policies without considering individual sample variations, which are likely to be sub-optimal. On the other hand, learning different policies for different samples naively could greatly increase the computing cost. In this paper, we learn a sample-aware data augmentation policy efficiently by formulating it as a sample reweighting problem. Specifically, an augmentation policy network takes a transformation and the corresponding augmented image as inputs, and outputs a weight to adjust the augmented image loss computed by a task network. At training stage, the task network minimizes the weighted losses of augmented training images, while the policy network minimizes the loss of the task network on a validation set via meta-learning. We theoretically prove the convergence of the training procedure and further derive the exact convergence rate. Superior performance is achieved on widely-used benchmarks including CIFAR-10/100, Omniglot, and ImageNet.
Automated data augmentation has shown superior performance in image recognition. Existing works search for datasetlevel augmentation policies without considering individual sample variations, which are likely to be sub-optimal. On the other hand, learning different policies for different samples naively could greatly increase the computing cost. In this paper, we learn a sample-aware data augmentation policy efficiently by formulating it as a sample reweighting problem. Specifically, an augmentation policy network takes a transformation and the corresponding augmented image as inputs, and outputs a weight to adjust the augmented image loss computed by a task network. At training stage, the task network minimizes the weighted losses of augmented training images, while the policy network minimizes the loss of the task network on a validation set via meta-learning. We theoretically prove the convergence of the training procedure and further derive the exact convergence rate. Superior performance is achieved on widely-used benchmarks including CIFAR-10/100, Omniglot, and ImageNet.
Generalization to out-of-distribution (OOD) data, or domain generalization, is one of the central problems in modern machine learning. Recently, there is a surge of attempts to propose algorithms for OOD that mainly build upon the idea of extracting invariant features. Although intuitively reasonable, theoretical understanding of what kind of invariance can guarantee OOD generalization is still limited, and generalization to arbitrary out-of-distribution is clearly impossible. In this work, we take the first step towards rigorous and quantitative definitions of 1) what is OOD; and 2) what does it mean by saying an OOD problem is learnable. We also introduce a new concept of expansion function, which characterizes to what extent the variance is amplified in the test domains over the training domains, and therefore give a quantitative meaning of invariant features. Based on these, we prove OOD generalization error bounds. It turns out that OOD generalization largely depends on the expansion function. As recently pointed out by [GLP20], any OOD learning algorithm without a model selection module is incomplete. Our theory naturally induces a model selection criterion. Extensive experiments on benchmark OOD datasets demonstrate that our model selection criterion has a significant advantage over baselines.
Deep neural networks are susceptible to adversarially crafted, small and imperceptible changes in the natural inputs. The most effective defense mechanism against these examples is adversarial training which constructs adversarial examples during training by iterative maximization of loss. The model is then trained to minimize the loss on these constructed examples. This min-max optimization requires more data, larger capacity models, and additional computing resources. It also degrades the standard generalization performance of a model. Can we achieve robustness more efficiently? In this work, we explore this question from the perspective of knowledge transfer. First, we theoretically show the transferability of robustness from an adversarially trained teacher model to a student model with the help of mixup augmentation. Second, we propose a novel robustness transfer method called Mixup-Based Activated Channel Maps (MixACM) Transfer. MixACM transfers robustness from a robust teacher to a student by matching activated channel maps generated without expensive adversarial perturbations. Finally, extensive experiments on multiple datasets and different learning scenarios show our method can transfer robustness while also improving generalization on natural images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.