Metabolic changes, principally in intermediary metabolism and nitrogen excretion, were investigated in the marble swamp eel (Synbranchus marmoratus) after 15 and 45 days of artificially induced semi-aestivation. Glucose, glycogen, lactate, pyruvate, free amino acids, triglycerides, ammonia, urea, and urate contents were determined in liver, kidney, white muscle, heart, brain, and plasma. Lactate dehydrogenase, glutamate dehydrogenase, malate dehydrogenase, aspartate amino transferase, alanine amino transferase, glutamine synthase, ornithine carbamoyl transferase, and arginase enzymes were assayed. The teleost S. marmoratus maintained initial energetic demands by lipid oxidation. The course of normal oxidative processes was observed through tissue enzyme profiles. After the lipid stores were exhausted, the fish consumed body proteins. Constant values of hematocrit during induced semi-aestivation suggested that the water balance remained normal. Therefore, the surrounding water was probably did not trigger the semi-aestivation in this teleost. Decrease of ammonia and increase of renal urea synthesis after 45 days of semi-aestivation led to the assumption that an alternative form of eliminating ammonia exists. Metabolic changes entailed by starvation were proposed to explain the biosynthesis of small molecules involved in the semi-aestivation of S. marmoratus.Key words: semi-aestivation, metabolism, adaptation, Synbranchus marmoratus, nitrogen excretion.
RESUMO