Despite clear evidence of a neuroprotective physiological role of amyloid precursor protein (APP) and its non‐amyloidogenic processing products, APP has been investigated mainly in animal and cellular models of amyloid pathology in the context of Alzheimer's disease. The rare familial mutations in APP and presenilin‐1/2, which sometimes drive increased amyloid β (Aβ) production, may have unduly influenced Alzheimer's disease research. APP and its cleavage products play important roles in cellular and mitochondrial metabolism, but many studies focus solely on Aβ. Mitochondrial bioenergetic metabolism is essential for neuronal function, maintenance and survival, and multiple reports indicate mitochondrial abnormalities in patients with Alzheimer's disease. In this review, we focus on mitochondrial abnormalities reported in sporadic Alzheimer's disease patients and the role of full‐length APP and its non‐amyloidogenic fragments, particularly soluble APPα, on mitochondrial bioenergetic metabolism. We do not review the plethora of animal and in vitro studies using mutant APP/presenilin constructs or experiments using exogenous Aβ. In doing so, we aim to invigorate research and discussion around non‐amyloidogenic APP processing products and the mechanisms linking mitochondria and complex neurodegenerative disorders such as sporadic Alzheimer's disease.
Linked Articles
This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc