2019
DOI: 10.1002/jcp.28637
|View full text |Cite
|
Sign up to set email alerts
|

Metabolic control by dehydroascorbic acid: Questions and controversies in cancer cells

Abstract: For a long time, the effect of vitamin C on cancer cells has been a controversial concept. From Linus Paulingʼs studies in 1976, it was proposed that ascorbic acid (AA) could selectively kill tumor cells. However, further research suggested that vitamin C has no effect on tumor survival. In the last decade, new and emerging functions for vitamin C have been discovered using the reduced form, AA, and the oxidized form, dehydroascorbic acid (DHA), independently. In this review, we summarized the latest findings … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
2
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 70 publications
0
2
0
3
Order By: Relevance
“…In fact, only administration of its oxidized form dehydroascorbate (DHA) may generate pharmacological levels of vitamin C in the brain, since DHA more readily crosses the blood-brain barrier via the glucose transporter GLUT1 (Spoelstrade Man et al, 2018). However, high-dose DHA cannot always be considered a valid alternative to ascorbate, since DHA antitumor activity depends on its conversion to ascorbate by glutathione and glutathione transferases and tumor cells might have different reducing ability and not always efficiently accumulate ascorbate (Ferrada et al, 2019). Moreover, modulation of TET activity, likely required for the observed synergism with PARPi, is mediated by ascorbate and not by vitamin C oxidized forms (Minor et al, 2013)(Dickson et al, 2013 (Yin et al, 2013) (Guan et al, 2020).…”
Section: Discussionmentioning
confidence: 99%
“…In fact, only administration of its oxidized form dehydroascorbate (DHA) may generate pharmacological levels of vitamin C in the brain, since DHA more readily crosses the blood-brain barrier via the glucose transporter GLUT1 (Spoelstrade Man et al, 2018). However, high-dose DHA cannot always be considered a valid alternative to ascorbate, since DHA antitumor activity depends on its conversion to ascorbate by glutathione and glutathione transferases and tumor cells might have different reducing ability and not always efficiently accumulate ascorbate (Ferrada et al, 2019). Moreover, modulation of TET activity, likely required for the observed synergism with PARPi, is mediated by ascorbate and not by vitamin C oxidized forms (Minor et al, 2013)(Dickson et al, 2013 (Yin et al, 2013) (Guan et al, 2020).…”
Section: Discussionmentioning
confidence: 99%
“…Второй механизм этой группы -внеклеточное окисление ASC в DHA, которая структурно похожа на глюкозу и транспортируется в клетки через транспортеры GLUTs, что способствует увеличению внутриклеточного пула DHA. Опухолевые клетки могут транспортировать DHA внутрь клетки, где она восстанавливается до ASC, что ведет к истощению пула глутатиона, NADH-и NADPHзависимых ферментов [4]. Это, в свою очередь, вызывает развитие окислительного стресса, инактивацию глицеральдегид-3-фосфат-дегидрогеназы, ингибирует гликолиз, уровень которого повышен в опухолевых клетках, и приводит к энергетическому кризису, губительному для клеток (рисунок) [41,42].…”
Section: возможные механизмы противоопухолевого действия Ascunclassified
“…Отдавая первый электрон, ASC превращается в аскорбильный радикал, который от-носительно стабилен и нереактивен. При потере двух электронов в ходе двух раундов окисления ASC превращается в дегидроаскорбиновую кислоту (DHA), которая может поглощаться и секретироваться клеткой с помощью переносчиков глюкозы GLUT1, 2, 3 и 8 (рисунок) [4]. Внутри клетки DHA может быстро восстановиться до ASC, реагируя с восстановленным глутатионом (GSH) (рисунок) [4].…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Vitamin C is found in both reduced and oxidized forms, ascorbic acid (AA) and dehydroascorbic acid (DHA). AA is taken up by high‐affinity sodium‐dependent transporters, sodium‐vitamin C cotransporter isoform 1 (SVCT1), in the kidney (T. Castro et al, 2008; Corpe et al, 2010; Forman et al, 2017; Lee et al, 2006; Nualart et al, 2003; Wang et al, 2000) or SVCT2 in the brain (M. Castro et al, 2001; Dixit et al, 2015; Ferrada, Salazar, & Nualart, 2019; Marcos et al, 2018; Salazar et al, 2014; Salazar et al, 2018; Silva‐Alvarez et al, 2017; Tsukaguchi et al, 1999; Ulloa et al, 2019; Warner, Kang, Kennard, & Harrison, 2015), whereas DHA uptake is mediated by facilitative glucose transporters (GLUTs), specifically GLUT1–4, with GLUT1 and 2 expressions in the kidney (Garcia‐Krauss et al, 2016; Nualart et al, 2003; Rumsey et al, 1997; Rumsey et al, 2000).…”
Section: Introductionmentioning
confidence: 99%