Background
Mechanical damage is an unavoidable threat to the growth and survival of plants. Although a wound to senescing (lower) leaves improves plant vitality, a wound to younger (upper) leaves often causes damage to or death of the whole plant. Source-sink models are often used to explain how plants respond to biotic or abiotic stresses. In this study, a source-sink model was used to explain the difference in the metabolic mechanism of mechanical damage to young and senescing leaves of Catharanthus roseus.
Results
In our study, GC-MS and LC-QTOF-MS metabolomics techniques were used to explore the differences in source-sink allocation and metabolic regulation in different organs of Catharanthus roseus after mechanical damage to the upper/lower leaves (WUL/WLL). Compared with that of the control group, the energy supplies of the WUL and WLL groups were increased and delivered to the secondary metabolic pathway through the TCA cycle. The two treatment groups adopted different secondary metabolic response strategies. The WLL group increased the input to the defense response after damage by increasing the accumulation of phenolics. A source-sink model was applied to the defensive responses to local (damaged leaves) and systemic (whole plant) damage. In the WUL group, the number of sinks increased due to damage to young leaves, and the tolerance response was emphasized.
Conclusion
The accumulation of primary and secondary metabolites was significantly different between the two mechanical damage treatments. Catharanthus roseus uses different trade-offs between tolerance (repair) and defense to respond to mechanical damage. Repairing damage and chemical defenses are thought to be more energetically expensive than growth development, confirming the trade-offs and allocation of resources seen in this source-sink model.