Identifying the ecological processes that structure communities and the consequences for ecosystem function is a central goal of ecology. The recognition that fungi, bacteria, and viruses control key ecosystem functions has made microbial communities a major focus of this field. Because many ecological processes are apparent only at particular spatial or temporal scales, a complete understanding of the linkages between microbial community, environment, and function requires analysis across a wide range of scales. Here, we map the biological and functional geography of soil fungi from local to continental scales and show that the principal ecological processes controlling community structure and function operate at different scales. Similar to plants or animals, most soil fungi are endemic to particular bioregions, suggesting that factors operating at large spatial scales, like dispersal limitation or climate, are the first-order determinants of fungal community structure in nature. By contrast, soil extracellular enzyme activity is highly convergent across bioregions and widely differing fungal communities. Instead, soil enzyme activity is correlated with local soil environment and distribution of fungal traits within the community. The lack of structure-function relationships for soil fungal communities at continental scales indicates a high degree of functional redundancy among fungal communities in global biogeochemical cycles.T he structure and function of ecological communities are intimately linked, such that the number and identity of species within a community often affect the key ecosystem properties of primary productivity (1), resistance and resilience to disturbance (2), and rates of nutrient cycling (3). However, understanding the extent to which structure-function relationships hold across communities and over large spatial scales continues to be a major goal of ecological research. Identifying these relationships for microbial organisms is particularly critical, because these organisms control rates of key ecosystem processes (the cycling of nitrogen, phosphorus, and carbon) (4) and directly affect the community structure of plants and animals through pathogenic or mutualistic interactions (5). As such, microbial activity is also intrinsic to Earth system models that inform citizens and policy makers of ecosystem dynamics and energy exchange between the biosphere and the atmosphere (6). As in plant communities of tropical rainforests (7), the incredible number of microbial taxa on Earth has been a challenge for understanding the link between diversity and function. Advances in DNA sequencing technology have recently allowed for a robust characterization of bacterial biogeographic patterns (8); however, to date, studies have examined structure-function relationships at a fixed scale (9-12). As a result, it is not yet clear how microbial function is linked to largescale biogeographic patterns, whether or not this link is a more reliable determinant of microbial function in global biogeochemical cycl...