Objectives: Low-dose (LD) computed tomography (CT) is still rarely used in musculoskeletal (MSK) radiology. This study evaluates the potentials of LD CT for follow-up pelvic imaging with special focus on tin filtration (Sn) technology for normal and obese patients with and without metal implants. Materials and Methods: In a phantom study, 5 different LD and normal-dose (ND) CT protocols with and without tin filtration were tested using a normal and an obese phantom. Iterative reconstruction (IR) and filtered back projection (FBP) were used for CT image reconstruction. In a subsequent retrospective patient study, ND CT images of 45 patients were compared with follow-up tin-filtered LD CT images with a 90% dose reduction. Sixty-four percent of patients contained metal implants at the follow-up examination. Computed tomography images were objectively (image noise, contrast-to-noise ratio [CNR], dose-normalized contrast-to-noise ratio [CNRD]) and subjectively, using a 6-point Likert score, evaluated. In addition, the figure of merit was calculated. For group comparisons, paired t tests, Wilcoxon signed rank test, analysis of variance, or Kruskal-Wallis tests were used, where applicable. Results: The LD Sn protocol with 67% dose reduction resulted in equal values in qualitative (Likert score) and quantitative image analysis (image noise) compared with the ND protocol in the phantom study. For follow-up examinations, dose could be reduced up to 90% by using Sn LD CT scans without impairment in the clinical study. However, metal implants resulted in a mild impairment of Sn LD as well as ND CT images. Cancellous bone (P < 0.001) was assessed worse and cortical bone ( P = 0.063) equally in Sn LD CT images compared with ND CT images. Figure of merit values were significant ( P ≤ 0.02) lower and hence better in Sn LD as in ND protocols. Obese patients benefited in particular from tin filtration in LD MSK imaging in terms of image noise and CNR ( P ≤ 0.05). Conclusions: Low-dose CT scans with tin filtration allow maximum dose reduction while maintaining high image quality for certain clinical purposes, for example, follow-up examinations, especially metal implant position, material loosening, and consolidation controls. Overweight patients benefit particularly from tin filter technology. Although metal implants decrease image quality in ND as well as in Sn LD CT images, this is not a relevant limitation for assessability.