Background and Objectives Understanding the pathophysiology of respiratory failure in coronavirus disease 2019 (COVID-19) is indispensable for development of therapeutic strategies. Since we observed similarities between COVID-19 and interstitial lung disease in connective tissue disease (CTD-ILD), we investigated features of autoimmunity in SARS-CoV-2-associated respiratory failure. Methods We prospectively enrolled 22 patients with RT-PCR-confirmed SARS-CoV-2 infection and 10 patients with non-COVID-19-associated pneumonia. Full laboratory testing was performed including autoantibody (AAB; ANA/ENA) screening using indirect immunofluorescence and immunoblot. Fifteen COVID-19 patients underwent high-resolution computed tomography. Transbronchial biopsies/autopsy tissue samples for histopathology and ultrastructural analyses were obtained from 4/3 cases, respectively. Results Thirteen (59.1%) patients developed acute respiratory distress syndrome (ARDS), and five patients (22.7%) died from the disease. ANA titers ≥1:320 and/or positive ENA immunoblots were detected in 11/13 (84.6%) COVID-19 patients with ARDS, in 1/9 (11.1%) COVID-19 patients without ARDS (p = 0.002) and in 4/10 (40%) patients with non-COVID-19-associated pneumonias (p = 0.039). Detection of AABs was significantly associated with a need for intensive care treatment (83.3 vs. 10%; p = 0.002) and occurrence of severe complications (75 vs. 20%, p = 0.03). Radiological and histopathological findings were highly heterogeneous including patterns reminiscent of exacerbating CTD-ILD, while ultrastructural analyses revealed interstitial thickening, fibroblast activation, and deposition of collagen fibrils. Conclusions We are the first to report overlapping clinical, serological, and imaging features between severe COVID-19 and acute exacerbation of CTD-ILD. Our findings indicate that autoimmune mechanisms determine both clinical course and long-term sequelae after SARS-CoV-2 infection, and the presence of autoantibodies might predict adverse clinical course in COVID-19 patients.
The incidence of fragility fractures of the pelvis is increasing. Established methods to diagnose this condition include X-rays, computed tomography (CT) and magnetic resonance imaging (MRI). Dual energy CT (DECT) is a modern technology for the imaging of bone oedema/bruises and has been used in injuries of the extremities and spine. It is unclear whether this technique can also be used in fragility fractures of the pelvis. The aim of this study was to perform a literature research and survey of the "AG Becken III" members of the German Society of Trauma Surgery (DGU) on the usefulness of DECT in fractures of the pelvis. A PubMed-based literature search on DECT comprised the key words "Dual Energy CT", "Pelvis/Pelvic", "Insufficiency" and "Fractures" and their combinations. Thirty-two publications were reviewed completely (full text). Finally, 15 articles were chosen and included in the current study. The survey of the members of the "AG Becken III" was based on a questionnaire and aimed to determine the popularity and potential benefits of DECT in comparison to established diagnostic options. No studies on the use of DECT in fragility fractures of the pelvis were identified; the few articles found referred to fractures of the extremities and spine. The response rate to the questionnaire was 25/83 (30.1 %). The participants had a mean personal experience of 8.4 years/151.6 interventions in pelvic surgery. Although some respondents had heard of DECT, this technique - if available - was only used in other indications. However, the potential benefit of DECT was recognised, especially in the acute diagnostic testing of fragility fractures. There is limited consensus on the optimal diagnostic test (CT vs. MRI) of pelvic fractures. Although DECT is already established for other indications and is regarded as a promising method by all respondents of the "AG Becken III", DECT is not yet routinely used for diagnostic testing of fragility fractures of the pelvis. Potential advantages of DECT include its greater sensitivity than CT in detecting bone oedema with equal radiation exposure. Unlike MRI, it is available 24 hours/7 days.
Background: Understanding the pathophysiology of respiratory failure (ARDS) in coronavirus disease 2019 (COVID-19) patients is of utmost importance for the development of therapeutic strategies and identification of risk factors. Since we observed clinical and histopathological similarities between COVID-19 and lung manifestations of connective tissue disease (CTD-ILD) in our clinical practice, aim of the present study is to analyze a possible role of autoimmunity in SARS-CoV-2-associated respiratory failure. Methods: In this prospective, single-center trial, we enrolled 22 consecutive patients with RT-PCR-confirmed SARS-CoV-2 infection hospitalized in March and April, 2020. We performed high-resolution computed tomography (HR-CT) and full laboratory testing including autoantibody (AAB) screening (anti-ANA, SS-B/La, Scl-70, Jo-1, CENP-B, PM-Scl). Transbronchial biopsies as well as post mortem tissue samples were obtained from 3 and 2 cases, respectively, and subsequent histopathologic analysis with special emphasis on characterization of interstitial lung disease was performed. Results: Twelve of 22 patients (54.5%) were male and median age was 69.0 (range: 28-88). 11 (50.0%) patients had to be undergo intensive care unit (ICU) treatment. Intubation with ventilation was required in 10/22 cases (46%). Median follow-up was 26 days. Clinical and serological parameters were comparable to previous reports. Radiological and histopathological findings were highly heterogeneous including patterns reminiscent of CTD-ILD. AAB titers ≥1:100 were detected in 10/11 (91.9%) COVID-19 patients who required ICU treatment, but in 4/11 (36.4%) patients with mild clinical course (p=0.024). Patients with AABs tended to require invasive ventilation and showed significantly more severe complications (64.3% vs. 12.5%, p=0.031). Overall COVID-19-related mortality was 18.2% among hospitalized patients at our institution. Conclusion: Our findings point out serological, radiological and histomorphological similarities between COVID-19-associated ARDS and acute exacerbation of CTD-ILD. While the exact mechanism is still unknown, we postulate that SARS-CoV-2 infection might trigger or simulate a form of organ-specific autoimmunity in predisposed patients. The detection of autoantibodies might identify patients who profit from immunosuppressive therapy to prevent the development of respiratory failure.
Objectives: With the aging population and thus rising numbers of orthopedic implants (OIs), metal artifacts (MAs) increasingly pose a problem for computed tomography (CT) examinations. In the study presented here, different MA reduction techniques (iterative metal artifact reduction software [iMAR], tin prefilter technique, and dual-energy CT [DECT]) were compared. Materials and Methods: Four human cadaver pelvises with OIs were scanned on a third-generation DECT scanner using tin prefilter (Sn), dual-energy (DE), and conventional protocols. Virtual monoenergetic CT images were generated from DE data sets. Postprocessing of CT images was performed using iMAR. Qualitative (bony structures, MA, image noise) image analysis using a 6-point Likert scale and quantitative image analysis (contrast-to-noise ratio, standard deviation of background noise) were performed by 2 observers. Statistical testing was performed using Friedman test with Nemenyi test as a post hoc test. Results: The iMAR Sn 150 kV protocol provided the best overall assessability of bony structures and the lowest subjective image noise. The iMAR DE protocol and virtual monochromatic image (VMI) ± iMAR achieved the most effective metal artifact reduction (MAR) (P < 0.05 compared with conventional protocols). Bony structures were rated worse in VMI ± iMAR (P < 0.05) than in tin prefilter protocols ± iMAR. The DE protocol ± iMAR had the lowest contrast-to-noise ratio (P < 0.05 compared with iMAR standard) and the highest image noise (P < 0.05 compared with iMAR VMI). The iMAR reduced MA very efficiently. Conclusions: When considering MAR and image quality, the iMAR Sn 150 kV protocol performed best overall in CT images with OI. The iMAR generated new artifacts that impaired image quality. The DECT/VMI reduced MA best, but experienced from a lack of resolution of bony fine structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.