Spectral CT represents a novel imaging approach that can noninvasively visualize, quantify, and characterize many musculoskeletal pathologies. This modality has revolutionized the field of radiology by capturing CT attenuation data across multiple energy levels and offering superior tissue characterization while potentially minimizing radiation exposure compared to traditional enhanced CT scans. Despite MRI being the preferred imaging method for many musculoskeletal conditions, it is not viable for some patients. Moreover, this technique is time-consuming, costly, and has limited availability in many healthcare settings. Thus, spectral CT has a considerable role in improving the diagnosis, characterization, and treatment of gout, inflammatory arthropathies, degenerative disc disease, osteoporosis, occult fractures, malignancies, ligamentous injuries, and other bone-marrow pathologies. This comprehensive review will delve into the diverse capabilities of dual-energy CT, a subset of spectral CT, in addressing these musculoskeletal conditions and explore potential future avenues for its integration into clinical practice.