Photoresist is used in electrical contact definition and processing in radioisotopic thermoelectric generators. Inadequate removal of material during processing could lead to electrical shorting when exposed to the high temperature use environment. This effect has been simulated through studies of the electrical resistance of thin layers of photoresist (Kodak Metal Etch Resist) on glass (Corning 7 052) with tungsten electrodes. Results show that both the photoresist and the glass contribute to the resistance. The glass resistance decreases with increasing temperature and becomes significant at high temperatures. Annealing studies on the photoresist show that the resistance of the photoresist decreases by over five orders of magnitude upon annealing to 500°C, with a corresponding decrease in activation energy from 0.27 eV (350°C anneal) to 0.10 eV (500°C anneal). Time dependent decreases in resistance of the photoresist were also measured for up to 8-9 days during high temperature anneals. Some electrolytic transport of tungsten may occur through the photoresist at high temperatures. Results are compared with data on thermoelectric generators and show that photoresist could cause the electrical aging (voltage degradation) problem observed in some generators.