The one-electron reduction of (tbsL)Fe3(thf)1 furnishes [M][(tbsL)Fe3] ([M]+ = [(18-C-6)K(thf)2]+ (1, 76%) or [(crypt-222)K]+ (2, 54%)). Upon reduction, the ligand tbsL6− rearranges around the triiron core to adopt an almost ideal C3-symmetry. Accompanying the (tbsL) ligand rearrangement, the THF bound to the neutral starting material is expelled, and the Fe–Fe distances within the trinuclear cluster contract by ~0.13 Å in 1. Variable-temperature magnetic susceptibility data indicates a well-isolated
S=+1112 spin ground state that persists to room temperature. Slow magnetic relaxation is observed at low temperature as evidenced by the out-of-phase
χM″ component of the alternating current (ac) magnetic susceptibility data and by the appearance of hyperfine splitting in the zero-field 57Fe Mössbauer spectra at 4.2 K. Analysis of the ac magnetic susceptibility yields an effective spin reversal barrier (Ueff) of 22.6(2) cm−1, nearly matching the theoretical barrier of 38.7 cm−1 calculated from the axial zero-field splitting parameter (D = −1.29 cm−1) extracted from the reduced magnetization data. A polycrystalline sample of 1 displays three sextets in the Mössbauer spectrum at 4.2 K (Hext = 0) which converge to a single six-line pattern in a frozen 2-MeTHF glass sample, indicating a unique iron environment and thus strong electron delocalization. The spin ground state and ligand rearrangement are discussed within the framework of a fully delocalized cluster exhibiting strong double and direct exchange interactions.