Perfect absorbers are important optical/thermal components required by a variety of applications, including photon/thermal-harvesting, thermal energy recycling, and vacuum heat liberation. While there is great interest in achieving highly absorptive materials exhibiting large broadband absorption using optically thick, micro-structured materials, it is still challenging to realize ultra-compact subwavelength absorber for on-chip optical/thermal energy applications. Here we report the experimental realization of an on-chip broadband super absorber structure based on hyperbolic metamaterial waveguide taper array with strong and tunable absorption profile from near-infrared to mid-infrared spectral region. The ability to efficiently produce broadband, highly confined and localized optical fields on a chip is expected to create new regimes of optical/thermal physics, which holds promise for impacting a broad range of energy technologies ranging from photovoltaics, to thin-film thermal absorbers/emitters, to optical-chemical energy harvesting. E fficient optical absorbers are highly desired on the microscale where they can play a significant role in preventing crosstalk between optical interconnects on integrated photonic chips. In the thermal spectral region, waste heat is a major energy loss (including thermal radiation loss) in both industrial sectors and our daily life 1 . Particularly, as the density of integrated circuits in portable electronic/optoelectronic devices increases, on-chip thermal management becomes a critical research topic. To recover thermal radiation energy from objects with varying temperature, an efficient ultra-broadband absorber is an indispensable component. However, it is challenging to realize ultra-compact broadband absorber for on-chip optical, thermal and energy applications. In classic microwave electromagnetic (EM) approaches, EM wave absorbers have long been explored and widely utilized for important military applications, such as improving radar performance and providing concealment against others' radar systems 2 . In general, however, EM wave absorbers have been limited by their large, bulky dimensions. In recent years, intensive research efforts have been performed to realize compact/portable perfect metamaterial absorbers 3 . For instance, ideal omnidirectional absorption resonances at microwave, terahertz and mid-near infrared (IR) and visible frequencies have been demonstrated using metamaterial EM absorbers constructed by dielectric thin-films sandwiched by a patterned metal film and a flat metal ground plane 3 . Due to the critical coupling and/or impedance matching mechanism 4,5 , a narrow band of incident light can be efficiently coupled to magnetic resonant modes supported in these patterned metal-dielectric-metal metasurface structures. By tuning the geometric parameters of top metal patterns, the narrow band perfect absorption resonance can be tuned freely 3 . Currently, there is great interest in achieving 'black' on-chip metamaterials exhibiting broadband absorption...