Sensitization to psychostimulants can be influenced by circadian rhythms. The pineal gland, the main source of circadian melatonin synthesis, may influence behavioral sensitization to cocaine; mice with normal melatonin rhythms do not get sensitized at night. Clock genes such as Period1 (Per1) show rhythmic region-and strain-dependent expression in the mouse brain, and mice mutant for the Per1 gene lack cocaine sensitization. Here, for the first time we show circadian changes of PER1 protein levels in the mouse striatum, a brain region crucial for the development of locomotor sensitization to cocaine. In male C3H/HeJ mice, we found peak striatal PER1 protein levels during the day; this was preceded by a Per1 mRNA peak 16 h earlier. Pinealectomized mice did not show this circadian pattern. We analyzed circadian cocaine sensitization at times when striatal PER1 protein levels in control mice (naive and sham-pinealectomized) were high and low, respectively. Only mice with circadian changes in striatal Per1 expression showed the night-time absence of cocaine sensitization, whereas pinealectomized mice were without circadian changes in striatal Per1 and were sensitized to cocaine regardless of diurnal rhythm. Our results indicate that both the striatal circadian Per1 expression and diurnal locomotor cocaine sensitization are strongly influenced by pineal products. Since we found evidence for the expression of melatonin receptor mRNA in the striatum, we suggest that further studies on pineal-driven mechanisms will help us better understand the mechanisms of drug abuse and identify novel targets for the prevention and/or treatment of addictions.