While the suprachiasmatic nucleus (SCN) coordinates the majority of daily rhythms, some circadian patterns of expression are controlled from outside of the SCN. These include responses to daily methamphetamine (MAP) injection, or daily restricted feeding. The mechanisms underlying these SCN‐independent circadian rhythms are unknown. A circadian oscillation in the expression of mPer1 and/or mPer2, mouse period, in the SCN is considered necessary to generate an SCN‐dependent circadian rhythm. Therefore, in this experiment, we examined the association between mPer gene expression and the MAP‐induced, SCN‐independent circadian rhythm. Acute injection of MAP caused an elevation of mPer1, mBmal1, and mNpas2 gene expression in the striatum and mPer1 in the liver. Daily MAP injection at a fixed time for 6 days shifted the rhythmic mPer1 and mPer2 expression in the striatum from a nocturnal to a diurnal rhythm, but failed to affect that in the SCN. Although lesion of the SCN ‘flattened’mPer gene oscillation in the striatum and liver, daily MAP injection caused both behavioural and mPer gene expression rhythms. Daily MAP injection at variable injection intervals (12–36 h) for 6 days, however, failed to produce mPer gene rhythm in the striatum. Daily repeated MAP signals may strengthen the oscillatory force of SCN‐independent circadian behavioural and molecular rhythms. The present results suggest that daily oscillation of mPer genes outside the SCN is closely associated with the regulation of SCN‐independent rhythms. Thus, the present experiment highlights strongly the important role of clock gene expression, in the brain, that underlies the circadian behavioural rhythm.
Aging alters circadian components such as the free-running period, the day-to-night activity ratio and photic entrainment in behavioral rhythms, and 2-deoxyglucose uptakes and neuronal firing in the suprachiasmatic nucleus (SCN). A core clock mechanism in the mouse SCN appears to involve a transcriptional feedback loop in which Period (Per) and Cryptochrome (Cry) genes play a role in negative feedback. The circadian rhythm systems include photic entrainment, clock oscillation, and outputs of clock information such as melatonin production. In this experiment, we examined clock gene expression to determine whether circadian input, oscillation, and output are disrupted with aging. Circadian expression profiles of rPer1, rPer2, or rCry1 mRNA were very similar in the SCN, the paraventricular nucleus of the hypothalamus (PVN), and the pineal body of young and aged (22-26 months) rats. On the other hand, the photic stimulation-induced rapid expression of Per1 and Per2 in the SCN was reduced with aging. The present results suggest that the molecular mechanism of clock oscillation in the SCN, PVN, and pineal body is preserved against aging, whereas the impairment of Per1 induction in the SCN after light stimulation may result in impaired behavioral photic entrainment in aged rats.
Methamphetamine (MAP) causes the sensitization phenomena not only in MAP-induced locomotor activity, dopamine release, and Fos expression, but also in MAP-induced circadian rhythm. Cocaine-induced sensitization is reportedly impaired in Drosophila melanogaster mutant for the Period (Per) gene. Thus, sensitization may be related to induction of the Per gene. A rapid induction of mPer1 and/or mPer2 in the suprachiasmatic nucleus after light exposure is believed to be necessary for light-induced behavioral phase shifting. Although the caudate/putamen (CPu) expresses mPer1 and/or mPer2 mRNA, the function of these genes in this nucleus has not yet been elucidated. Therefore, we examined whether MAP affects the expression of mPer1 and/or mPer2 mRNA in the mouse CPu. Injection of MAP augmented the expression of mPer1 but not mPer2 or mPer3 in the CPu, and this MAP-induced increase in mPer1 expression lasted for 2 h. Also, the MAP-induced increase of mPer1 mRNA was strongly antagonized by pretreatment with a dopamine D1 receptor and N-methyl-D-aspartate (NMDA) receptor antagonist, but not by a D2 receptor antagonist. Interestingly, application of either the D1 or the D2 agonist alone did not cause mPer1 expression. The present results demonstrate that activation of both NMDA and D1 receptors is necessary to produce MAP-induced mPer1 expression in the CPu. Repeated injection of MAP caused a sensitization in not only the locomotor activity but also mPer1 expression in the CPu without affecting the level of mPer2, mPer3, or mTim mRNA. Thus, these results suggest that MAP-induced mPer1 gene expression may be related to the mechanism for MAP-induced sensitization in the mouse.
Aging alters circadian components such as the free-running period, the day-to-night activity ratio and photic entrainment in behavioral rhythms, and 2-deoxyglucose uptakes and neuronal firing in the suprachiasmatic nucleus (SCN). A core clock mechanism in the mouse SCN appears to involve a transcriptional feedback loop in which Period (Per) and Cryptochrome (Cry) genes play a role in negative feedback. The circadian rhythm systems include photic entrainment, clock oscillation, and outputs of clock information such as melatonin production. In this experiment, we examined clock gene expression to determine whether circadian input, oscillation, and output are disrupted with aging. Circadian expression profiles of rPer1, rPer2, or rCry1 mRNA were very similar in the SCN, the paraventricular nucleus of the hypothalamus (PVN), and the pineal body of young and aged (22-26 months) rats. On the other hand, the photic stimulation-induced rapid expression of Per1 and Per2 in the SCN was reduced with aging. The present results suggest that the molecular mechanism of clock oscillation in the SCN, PVN, and pineal body is preserved against aging, whereas the impairment of Per1 induction in the SCN after light stimulation may result in impaired behavioral photic entrainment in aged rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.