This study presents design considerations and an evaluation of a full-scale process chain for methanol and advanced drop-in fuel production derived from lignite/solid recovered fuel (SRF) feedstock. The plant concept consists of a high-temperature Winkler (HTW) gasifier coupled with an air separation unit (ASU), which provides a high-purity (99.55%) gasification oxidant agent. The concept includes the commercially proven acid gas removal (AGR) system based on cold methanol (e.g., Rectisol® process) for the removal of BTX and naphthalene components. With the involvement of Rectisol®, an almost pure CO2 off-gas stream is generated that can be further stored or utilized (CCS/CCU), and a smaller CO2 stream containing H2S is recovered and subsequently driven to the sulfur recovery unit (e.g., Claus process). One of the potential uses of methanol is considered, and a methanol upgrading unit is implemented. The overall integrated process model was developed in the commercial software Aspen PlusTM. Simulations for different feedstock ratios were investigated, ensuring the concept’s adaptability in each case without major changes. A number of parametric studies were performed concerning (a) the oxygen purity and (b) the reformer type, and a comparison against alternative methanol production routes was conducted. Simulations show that the proposed system is able to retain the cold gas efficiency (CGE) in the range of 79–81.1% and the energetic fuel efficiency (EFE) at around 51%. An efficient conversion of approximately 99.5% of the carbon that enters the gasifiers is accomplished, with around 45% of carbon being captured in the form of pure CO2. Finally, the metrics of EFE and total C for the conversion of methanol to liquid fuels were 40.7% and 32%, respectively, revealing that the proposed pathway is an effective alternative for methanol valorization.