Abstract:This contribution shows the feasibility of improving the modeling of the non-linear behavior of airborne pollution in large cities. In previous works, models have been constructed using many machine learning algorithms. However, many of them do not work for all the pollutants, or are not consistent or robust for all cities. In this paper, an improved algorithm is proposed using Ant Colony Optimization (ACO) employing models created by a neuro-fuzzy system. This method results in a reduction of prediction error… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.