COVID-19 infection is growing in a rapid rate. Due to unavailability of specific drugs, early detection of (COVID-19) patients is essential for disease cure and control. There is a vital need to detect the disease at early stage and instantly quarantine the infected people. Many research have been going on, however, none of them introduces satisfactory results yet. In spite of its simplicity, K-Nearest Neighbor (KNN) classifier has proven high flexibility in complex classification problems. However, it can be easily trapped. In this paper, a new COVID-19 diagnose strategy is introduced, which is called COVID-19 Patients Detection Strategy (CPDS). The novelty of CPDS is concentrated in two contributions. The first is a new hybrid feature selection Methodology (HFSM), which elects the most informative features from those extracted from chest Computed Tomography (CT) images for COVID-19 patients and non COVID-19 peoples. HFSM is a hybrid methodology as it combines evidence from both wrapper and filter feature selection methods. It consists of two stages, namely; Fast Selection Stage (FS
2
) and Accurate Selection Stage (AS
2
). FS
2
relies on filter, while AS
2
uses Genetic Algorithm (GA) as a wrapper method. As a hybrid methodology, HFSM elects the significant features for the next detection phase. The second contribution is an enhanced K-Nearest Neighbor (EKNN) classifier, which avoids the trapping problem of the traditional KNN by adding solid heuristics in choosing the neighbors of the tested item. EKNN depends on measuring the degree of both closeness and strength of each neighbor of the tested item, then elects only the qualified neighbors for classification. Accordingly, EKNN can accurately detect infected patients with the minimum time penalty based on those significant features selected by HFSM technique. Extensive experiments have been done considering the proposed detection strategy as well as recent competitive techniques on the chest CT images. Experimental results have shown that the proposed detection strategy outperforms recent techniques as it introduces the maximum accuracy rate.
The outbreak of Coronavirus has spread between people around the world at a rapid rate so that the number of infected people and deaths is increasing quickly every day. Accordingly, it is a vital process to detect positive cases at an early stage for treatment and controlling the disease from spreading. Several medical tests had been applied for COVID-19 detection in certain injuries, but with limited efficiency. In this study, a new COVID-19 diagnosis strategy called Feature Correlated Naïve Bayes (FCNB) has been introduced. The FCNB consists of four phases, which are; Feature Selection Phase (FSP), Feature Clustering Phase (FCP), Master Feature Weighting Phase (MFWP), and Feature Correlated Naïve Bayes Phase (FCNBP). The FSP selects only the most effective features among the extracted features from laboratory tests for both COVID-19 patients and non-COVID-19 people by using the Genetic Algorithm as a wrapper method. The FCP constructs many clusters of features based on the selected features from FSP by using a novel clustering technique. These clusters of features are called Master Features (MFs) in which each MF contains a set of dependent features. The MFWP assigns a weight value to each MF by using a new weight calculation method. The FCNBP is used to classify patients based on the weighted Naïve Bayes algorithm with many modifications as the correlation between features. The proposed FCNB strategy has been compared to recent competitive techniques. Experimental results have proven the effectiveness of the FCNB strategy in which it outperforms recent competitive techniques because it achieves the maximum (99%) detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.