Prostate cancer is one of the most identified cancers and second most prevalent among cancer-related deaths of men worldwide. Early diagnosis and treatment are substantial to stop or handle the increase and spread of cancer cells in the body. Histopathological image diagnosis is a gold standard for detecting prostate cancer as it has different visual characteristics but interpreting those type of images needs a high level of expertise and takes too much time. One of the ways to accelerate such an analysis is by employing artificial intelligence (AI) through the use of computer-aided diagnosis (CAD) systems. The recent developments in artificial intelligence along with its sub-fields of conventional machine learning and deep learning provide new insights to clinicians and researchers, and an abundance of research is presented specifically for histopathology images tailored for prostate cancer. However, there is a lack of comprehensive surveys that focus on prostate cancer using histopathology images. In this paper, we provide a very comprehensive review of most, if not all, studies that handled the prostate cancer diagnosis using histopathological images. The survey begins with an overview of histopathological image preparation and its challenges. We also briefly review the computing techniques that are commonly applied in image processing, segmentation, feature selection, and classification that can help in detecting prostate malignancies in histopathological images.
Classification of gene expression data is a pivotal research area that plays a substantial role in diagnosis and prediction of diseases. Generally, feature selection is one of the extensively used techniques in data mining approaches, especially in classification. Gene expression data are usually composed of dozens of samples characterized by thousands of genes. This increases the dimensionality coupled with the existence of irrelevant and redundant features. Accordingly, the selection of informative genes (features) becomes difficult, which badly affects the gene classification accuracy. In this paper, we consider the feature selection for classifying gene expression microarray datasets. The goal is to detect the most possibly cancer-related genes in a distributed manner, which helps in effectively classifying the samples. Initially, the available huge amount of considered features are subdivided and distributed among several processors. Then, a new filter selection method based on a fuzzy inference system is applied to each subset of the dataset. Finally, all the resulted features are ranked, then a wrapper-based selection method is applied. Experimental results showed that our proposed feature selection technique performs better than other techniques since it produces lower time latency and improves classification performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.